1.7. Product space

probability Durrett

Let $X, Y$ be random variables on $(\Omega_1, \mathcal{F}_1, P_1)$ and $(\Omega_2, \mathcal{F}_2, P_2)$ respectively. In order to well-define sets such as $\{ X + Y \le 0 \}$, we should consider a random vector $(X,Y)$ on a product space $\mathbb{R} \times \mathbb{R}$ since $+: \mathbb{R}\times\mathbb{R} \to \mathbb{R}$ is defined this way. In addition, to measure the probability of such sets, we also need to define another product probability space $(\Omega, \mathcal{F}, P)$ where $\Omega = \Omega_1 \times \Omega_2$. Main question to answer in this subsection is: how can we define a proper $\sigma$-field $\mathcal{F}$ and a product measure $P$ on such $\Omega$?
» continue reading


1.6. $L^p$ space

probability Durrett

In the previous section, we defined Lebesgue integrability and write $f \in L^1$ for such function $f$. We also defined the $L^p$-norm. $L$ in these notations stands for “Lebesgue” and $L^p$ for $p \ge 1$ becomes a space of functions that is integrable in the order of $p$. We name it $L^p$ space.
» continue reading


1.4. The Lebesgue integral

probability Durrett

In this section, we define the expectation of a random variable as the Lebesgue integral with respect to the probability measure. First, I will introduce the standard machine in measure theory and use it to define the Lebesgue integral. Next, the definition of expectation will be discussed in terms of the Lebesgue integral.
» continue reading