2.2. Weak laws of large numbers

probability Durrett

We say a random variable $X_n$ converges in probability (or $P$-converges) to another random variable $X$ and write $X_n \overset{P}{\to} X$ if $\lim_n P(|X_n - X| > \epsilon) = 0$ for all $\epsilon >0.$ We can also define convergence in probability to a constant by letting $X = c\in\mathbb{R}$. It is easy yet useful to know that $X_n \overset{L^p}{\to} X$ with $p > 0$ implies $X_n \overset{P}{\to} X$ by Markov-Chebyshev inequality with $\varphi(x) = |x|^p$.1
» continue reading


2.1. Independence

probability Durrett

First chapter was about the essential of measure theory. We especially focused on important result for finite measure or at least $\sigma$-finite measures. We defined a probability space as a measure space and a random variable as a measurable function in it.
» continue reading