4. Hilbert Space Theory

real analysis Real and Complex Analysis

Objective of this chapter is to completely characterize $L^2(\mu),$ the famous Hilbert space. To achieve our goal, we will use the fact that a Hilbert space can be seen as an infinite-dimensional vector space where there exists a “orthogonal basis”. i.e. any element in the space can be decomposed into an infinite linear combination of orthogonal components. In fact, the basis decomposition yields to the main result that $L^2$ is actually isomorphic to $\ell^2.$
» continue reading


2. Construction of Lebesgue Measure

real analysis Real and Complex Analysis

In this chapter, we construct the Lebesgue measure on $\mathbb{R}^d.$ For this, we prove Riesz representation theorem and use the result to construct a complete measure space $(\mathbb{R}, \mathfrak{M}, m)$ such that integration with respect to $m$ is equal to Riemann integration for all Riemann-integrable functions. We then use $\sigma$-compactness of $\mathbb{R}$ to show that such $m$ is the Lebesgure measure.
» continue reading