3.2.2. Vague convergence and uniform tightness

probability Durrett

Our next interest is in whether a sequence of distribution functions converges weakly. To be more specific, subsequential convergence of distribution functions are is the topic of this subsection. Helly’s selection theorem shows there always exists a vaguely convergent subsequence. Uniform tightness of a sequence strengthen this result to be weakly convergent.
» continue reading


3.2.1. Weak convergence

probability Durrett

Now that we covered convergence of point estimates (specifically, the sample mean) our next interest is in weaker concept of convergence where convergence in probability is not guaranteed. In undergraduate statistics, we call it convergence in distribution. Here we prefer borrowing terminology from measure theory and call it weak convergence and write $X_n \overset{w}{\to} X$.
» continue reading