3.2.2. Vague convergence and uniform tightness
Our next interest is in whether a sequence of distribution functions converges weakly. To be more specific, subsequential convergence of distribution functions are is the topic of this subsection. Helly’s selection theorem shows there always exists a vaguely convergent subsequence. Uniform tightness of a sequence strengthen this result to be weakly convergent.
Helly’s selection theorem
Notice that unlike weak convergence, vague convergence does not guarantee that the limiting function $F$ is a distribution function.
expand proof
(Step 1. Diagonal argument) Let $q_1,q_2,\cdots \in \mathbb{Q}$ be enumeration of rationals. For $k=1,$ $\{F_1(q_1),F_2(q_1),\cdots\}$ is a bounded real sequence so has a limit point. Pick a subsequence $(n_{1k})$ such that $F_{1k}(q_1) \to G(q_1)$ for a limit point $G(q_1).$ For $k=2,$ we do the similar work. $\{F_{n_{11}}(q_2), F_{n_{12}}(q_2),\cdots\}$ is a bounded real sequence so has a limit point $G(q_2).$ Picka further subsequence $(n_{2k})\subset(n_{1k})$ such that $F_{2k}(q_2) \to G(q_2).$ Repeat this process for all consecutive $k\in\mathbb{N}$ and let $m_k = n_{kk}$ so that $F_{mk} \to G(q)$ for all $q \in \mathbb{Q}.$ Then by construction $G$ is non-decreasing. Let $F(x) = \inf\{G(q):~ q\in\mathbb{Q}, q> x\}.$
(Step 2. $F \leftarrow_{v.} F_{m_k}$ is right-continuous)
First we prove that $F$ is right-continuous. $$ \begin{align} \lim_{x_n\downarrow x} F(x_n) &= \lim_{x_n\downarrow x} \inf\{G(q):~ q\in\mathbb{Q}, q>x_n\} \\ &= \inf\{G(q):~ q\in\mathbb{Q}, q>x_n \text{ for some } n\} \\ &= \inf\{G(q):~ q\in\mathbb{Q}, q>x\} = F(x). \end{align} $$ Next we show that $F_{m_k} \to_{v.} F.$ Given $x$ a continuity point of $F,$ pick $r_1,r_2,s\in\mathbb{Q}$ so that $r_1<r_2<x<s$ and $F(x)-\epsilon<F(r_1)\le F(r_2) \le F(x) \le F(s) < F(x)+\epsilon.$ Then $$ F_{m_k}(r_2) \to G(r_2) \ge F(r_1) = \inf\{G(q):~ q\in\mathbb{Q}, q>r_1\}, \\ F_{m_k}(s) \to G(s) \le F(s) = \inf\{G(q):~ q\in\mathbb{Q}, q>s\}. $$ Thus for all large $k$, $$ F(x)-\epsilon < F_{m_k}(x) < F(x)+\epsilon. $$ so $F_{m_k} \to_{v.} F.$
Tightness theorem
While Helly’s thereom provides valuable result, vague convergence is not enough. We want additional condition that allows us to ensure weak convergence. Uniform tightness1 is the one.
Uniform tightness implies the measure of any set can be approximated from below by some compact set. This condition leads to a stronger result.
expand proof
($\Leftarrow$) We need to show that for $F_{n_k} \to_{v.} F,$ $F$ is a distribution function. It suffices to show $\lim_{x \to \infty} (1-F(x)+F(-x))=0.$ Given $\epsilon>0,$ there exists $M>0$ such that $\limsup_n (1-F_n(M)+F_n(-M)) \le \epsilon.$ Let $r<-M$ and $s>M$ be continuity points of $F.$ $$ \begin{align} 1-F(s)+F(r) &= \lim_k (1-F_{n_k}(s)+F_{n_k}(r)) \\ &\le \limsup_n (1-F_n(M)+F_n(-M)) \le \epsilon. \end{align} $$ Thus $$ \limsup\limits_{x\to\infty} (1-F(x)+F(-x)) \le \epsilon. $$ ($\Rightarrow$) Suppose $(F_n)$ is not tight and show that $F$ is not a distribution function in that case. There exists $\epsilon>0$ such that $\limsup_n(1-F_n(M)+F_n(M))>\epsilon$ for all $M.$ Let $r<0<s$ be continuity points of $F,$ then $$ \begin{align} 1-F(s)+F(r) &= \lim_j (1-F_{n(k_j)}(s)+F_{n(k_j)}(r)) \\ &\ge \liminf\limits_j (1-F_{n(k_j)}(k_j)+F_{n(k_j)}(-k_j)) \ge \epsilon. \end{align} $$ As $s\to\infty$ and $r\to-\infty,$ $\lim_{x\to\infty} (1-F(x)+F(-x))>0$ so $F$ is not a distribution function.
There is a criterion for checking whether a sequence is uniformly tight.
Acknowledgement
This post series is based on the textbook Probability: Theory and Examples, 5th edition (Durrett, 2019) and the lecture at Seoul National University, Republic of Korea (instructor: Prof. Johan Lim).
-
Many textbooks including Durrett and Billingsley use the term tightness to describe this condition. However I want to separate the terms for clarity: uniform tightness for a collection of measures, and tightness for a measure. ↩