3.10. Limit theorems in ℝᵈ
This part covers limit theorems regarding random vectors $\mathbf{X} = (X_1,\cdots,X_d)’\in\mathbb{R}^d.$
- Definitions
- Limit theorems
- Characteristic functions and inversion
- Central limit theorem in $\mathbb{R}^d$
Definitions
(i) non-decreasing.
(ii) right-continuous.
(iii) $\lim_{x\to-\infty}F(x)=0$ and $\lim_{x\to\infty}F(x)=1.$ Where $x\to\infty$ means $x_i\to\infty$ for all $i=1,\cdots,d$ and $x\downarrow x$ means $y_i\downarrow x_i$ for all $i.$
(iv) $\Delta_A F := P(X\in A) \ge 0$ for all rectangle $A,$ where $P(X\in A) = \sum_{v\in V}\text{sgn}(v)F(v),$ $A=(a_1,b_1]\times\cdots\times(a_d,b_d],$ $V=\{a_1,b_1\}\times\cdots\times\{a_d,b_d\},$ $\text{sgn}(v) = (-1)^{(\text{\# of } a_i \text{'s in } v)}.$
Limit theorems
We arrive at another portmanteau theorem.
(i) $Eg(X_n) \to Eg(X_\infty),~ \forall g:$ bounded, continuous.
(ii) $Eg(X_n) \to Eg(X_\infty),~ \forall g:$ bounded, Lipschitz continuous.
(iii) $\limsup_n P(X_n \in F) \le P(X_\infty \in F),~ \forall F:$ closed.
(iv) $\liminf_n P(X_n \in G) \ge P(X_\infty \in G),~ \forall G:$ open.
(v) $\lim_n P(X_n\in A) = P(X_\infty \in A),~ \forall A:~ P(X_\infty \in \partial A)=0.$
(vi) $Ef(X_n) \to Ef(X_\infty),~ \forall f:$ bounded and $P(X_\infty \in D_f) = 0.$
In addition, we get multi-dimensional version of tightness theorem.
The proof uses both Helly’s selection theorem and uniform tightness.
Characteristic functions and inversion
We achieve the result by Fubini’s theorem and the inversion formula for random variables.
Central limit theorem in $\mathbb{R}^d$
Cramer-Wold device implies if every linear combination converges weakly to the same random variable, then the random vector itself weakly converges. In fact for normal random vector we can prove that $\mathbf{X} \sim \mathcal{N}_d(0,\mathbf{\Gamma})$ if and only if $\mathbf{t}\cdot\mathbf{X} \sim \mathcal{N}(0,\mathbf{t}’\mathbf{\Gamma}\mathbf{t})$ for all $\mathbf{t} \in \mathbb{R}^d.$
Let $\mathbf{S}_n = \mathbf{X}_1+\cdots+\mathbf{X}_n$, then $\frac{\mathbf{S}_n - n\mathbf{\mu}}{\sqrt n} \overset{w}{\to} \mathcal{N}_d(\mathbf{0}, \mathbf{\Gamma}).$
Without loss of generality, let $\mathbf{\mu}=0.$ Given $\mathbf{t} \in \mathbb{R}^d,$ $$\frac{1}{\sqrt n} \mathbf{t}\cdot\mathbf{S}_n = \frac{1}{\sqrt n} \sum\limits_{i=1}^n \mathbf{t}\cdot\mathbf{X}_i \overset{w}{\to} \mathcal{N}(0,\sigma_t^2)$$ where $\sigma_t^2 = \text{Var}(\mathbf{t}\cdot\mathbf{X}_i) = \mathbf{t}'\mathbf{\Gamma}\mathbf{t}.$ By Cramer-Wold device and the fact, the desired result follows.
Acknowledgement
This post series is based on the textbook Probability: Theory and Examples, 5th edition (Durrett, 2019) and the lecture at Seoul National University, Republic of Korea (instructor: Prof. Johan Lim).