3.1. Uniform Law Under Finite Bracketing Entropy

$\newcommand{\argmin}{\mathop{\mathrm{argmin}}\limits}$ $\newcommand{\argmax}{\mathop{\mathrm{argmax}}\limits}$

In Chapter 3, we will focus on the uniform law of large numbers and its sufficiencies. The first part of the chapter consists of the simplest case: ULLN under finite bracketing entropy condition. After that, techniques to prove sufficiencies of ULLN will be introduced. Finally, ULLN under limiting $L^1$-entropy, popular function classes, or under constraints in VC dimension will be covered.

ULLN under finite bracketing entropy

The first form of the ULLN can be derived from finite bracketing entropy condition.

$$ H_{B,1,P}(\delta,\mathcal G),~ \forall \delta >0 \implies \mathcal G \text{ satisfies the ULLN.} $$

Given $\delta>0.$ Let $\{[\ell_i,u_i]\}_{i=1}^N$ be a set of $\delta$-brackets for $\mathcal G.$ $$ \begin{aligned} \int g d(P_n-P) &le \int u_i dP_n - \int g dP \\ &= \int u_i d(P_n-P) + \int (u_i-g) dP \\ &\le \int u_id(P_n-P) + \delta. \end{aligned} $$ Similarly, $$ \int gd(P_n-P) \ge \int \ell_id(P_n-P) - \delta. $$ Hence, $$ \begin{aligned} \left| \int g d(P_n-P) \right| &\le \max\left\{ \int\ell_id(P_n-P), \int u_id(P_n-P) \right\} + \delta. \\ \sup_{g\in\mathcal G}\left| \int g d(P_n-P) \right| &\le \max_{i=1,\cdots,N}\left\{ \int\ell_id(P_n-P), \int u_id(P_n-P) \right\} + \delta. \\ \end{aligned} $$ By Glivenko-Cantelli theorem, $\int \ell_i dP_n$ converges to $\int \ell_i dP$ almost surely for all $i$'s. Since the indices are finite, $$ \max_{i=1,\cdots,N}\left\{ \int\ell_id(P_n-P), \int u_id(P_n-P) \right\} \le \delta $$ for sufficiently large $n.$ Hence $$ \limsup_n \sup_{g\in\mathcal G} \left| \int g d(P_n-P) \right| \le 2\delta \text{ a.s.} $$ and the result follows.

The envelope condition

For a function class $\mathcal G,$ the function $G:=\sup_{g\in\mathcal G} |g|$ is the envelope of $\mathcal G$.
In addition, we say $\mathcal G$ satisfies the envelope condition, if $G \in L^1(P).$

In fact, the condition given in the lemma 3.1 is a sufficiency of the envelope condition.

$$ H_{B,1,P}(\delta,\mathcal G) < \infty,~ \forall\delta>0 \implies G \in L^1(P) $$ where $G(x):=\sup_{g\in\mathcal G} |g(x)|.$

By the given condition, $\sup_{g\in\mathcal G}\|g\|_{1,P} < \infty.$

Let $\{[\ell_i,u_i]\}_{i=1}^N$ be a set of $1$-brackets of $\mathcal G.$ For $g\in\mathcal G,$ there exists an index $j$ such that $\ell_j \le g\le u_j.$ Because $|u_i-\ell_i|\le 1$ for all $i=1,\cdots,N,$ $$ \begin{aligned} |g| &\le |u_j - \ell_j| + |\ell_j|, \\ \sup_{g\in\mathcal G} |g| &\le \sum_{i=1}^N |\ell_i| + \sum_{i=1}^N |u_i-\ell_i|. \end{aligned} $$ Hence, $$ \|G\|_{1,P} \le \sum_{i=1}^N \|\ell_i\|_{1,P} + N < \infty. $$


  • van de Geer. 2000. Empirical Processes in M-estimation. Cambridge University Press.
  • Theory of Statistics II (Fall, 2020) @ Seoul National University, Republic of Korea (instructor: Prof. Jaeyong Lee).