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1 Central Limit Theorem

1.1 Infinitely Divisible Distributions

A certain kind of well behaving distributions has characteristic functions that can be represented in
canonical form. In this section we cover conditions that such distributions have and its canonical
representation.

1.1.1 Infinitely divisible distributions

Definition 1 (infinitely divisible distribution). Let F be a distribution with characteristic function
ϕ. F is inifinitely divisible (ID for short) if one of the followings hold.
(i) There exists a squence of distributions (Fn) such that F = Fn ∗ · · · ∗ Fn for all n ∈ N.
(ii) There exists random variables X,Xnk in a probability space (Ω,F , P ) such that X

d
= Xn1 + · · ·+

Xnn for all n, where X ∼ F , Xnk ∼ Fn for all k and Xnk’s are rowwise independent.
(iii) There exists a sequence of characteristic functions (ϕn) such that ϕ = (ϕn)n.

Here ∗ denotes convolution. In fact all three conditions are equivalent. As an example, we can

easily check that a normal distribution X ∼ N (µ, σ2) is infinitely divisible since X
d
= Xn1+· · ·+Xnn

for rowwise independent Xnk ∼ N (µn ,
σ2

n ).
First important property is that characteristic functions of ID distributions always have non-zero

values. For this, we need a lemma that applies to all characteristic functions.
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Lemma 1. For a ch.f. ϕ,
1− |ϕ(2t)|2 ≤ 4(1− |ϕ(t)|2).

Proof. Proof is simple using elementary trigonometrics. Notice that |ϕ|2 is a real-valued ch.f. so it
suffices to show that Re(1− ϕ(2t)) ≤ 4Re(1− ϕ(t)) for a given ϕ.

Re(1− ϕ(t)) =

∫
(1− cos tx)dF (x)

=

∫
2 sin2 t

2
dF (x)

=

∫
sin2 tx

2 cos2 t
2x
dF (x)

=

∫
1

2
sin2 txdF (x)

=

∫
1

4
(1− cos 2tx)dF (x)

=
1

4
Re(1− ϕ(2t)).

Theorem 1.
For an infinitly divisible ϕ, ϕ(t) 6= 0, ∀t.

Proof. Proof is by induction. Since ϕ is ID, there exists ϕn such that ϕ = (ϕn)n. We know that
ϕ→ 1 as t→ 0, so there exists a > 0 such that |ϕ(t)| > 0 for all |t| ≤ a.

Given t that |t| ≤ a,

|ϕn(t)| = |ϕ(t)
1
n | ≥

(
inf
|t|≤a

|ϕ(t)|
) 1
n

→n 1.

so for all 0 ≤ ε ≤ 1, there exists N > 0 such that |ϕn(t)| > 1 − ε for all n ≥ N. By the lemma, for
n ≥ N and |t| ≤ a,

1− |ϕn(2t)|2 ≤ 4(1− (1− ε)2) ≤ 8ε.

Thus for large n, |ϕn(2t)|2 ≥ 1 − 8ε > 0, for all 0 < ε < 1/8. This gives ϕ(2t) 6= 0 for all |t| ≤ a.
Repeatedly apply the process to get ϕ 6= 0 for all t.

1.1.2 Canonical representation

Characteristic functions of Infinitely divisible distributions can be uniquely represented in a certain
form. Furthermore, if a characteristic function can be written in such form, then it is infinitly di-
visible. We call it a canonical form. While there are several equivalent canonical representations,
I would like to cover the one by Kolmogorov. The first theorem is about sufficiency of ID distribution.
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Sufficiency

Theorem 2 (Kolmogorov’s canonical representation i). Let ϕ be a characteristic function. If

ϕ(t) = exp

{∫ ∞
−∞

eitx − 1− itx
x2

dµ(x)

}
, ∀t

for some finite measure µ on (R,B(R)), then ϕ is infinitely divisible with mean 0 and variance µ(R).

Proof. (case 1. µ has a mass only at 0.)

Let σ2 = µ(R) = µ{0} > 0 then ϕ(t) = e
t2σ2

2 which is the ch.f. of N (0, σ2) so it is ID.
(case 2. µ has a mass only at x 6= 0.)

Let µ{x} = λx2 for some λ > 0. Then ϕ(t) = eλ(eitx−1−itx) which is a ch.f. of x(Zλ − λ) where

Z ∼ P(λ). Let Xnk
iid∼ P(λn ) for 1 ≤ k ≤ n. x(Zλ − λ)

d
= x

∑n
k=1(Xnk − λ

n ) so it is ID.
(case 3. µ has masses at x1, · · · , xk.)
Let µ{xi} = δi > 0 and ϕi(t) = exp{

∫∞
−∞

eitx−1−itx
x2 dµi(x)} where µi(R) = δi. By case 2, ϕi is ID

with mean 0 and variance δi. Thus for all n, there exists ch.f.s ϕjn such that ϕn = (ϕjn)n. It follows

that ϕ =
∏k
j=1 ϕj =

(∏k
j=1 ϕjn

)n
thus ϕ is ID. Let X ∼ ϕ and Xi

indep∼ ϕi then X
d
= X1 + · · ·+Xk

so EX = 0,Var(X) = µ{x1, · · · , xk}.
(case 4. general finite µ.)
Let µk{j · 2−k} = µ(j · 2−k, (j + 1)2−k], j ∈ Jk = {0,±1,±2, · · · ,±22k}. Then µk has masses on
{j · 2−k : j ∈ Jk}. Since µk(R)→ µ(R) > 0 as k →∞, µk(R) > 0 for all large k.
Now assume that f : R→ R is continuous and vanishes at infinity (i.e. lim|x|→∞ f(x) = 0). Let

fk =

{
f(j · 2−k) , x ∈ (j · 2−k, (j + 1)2−k]

0 , otherwise

be a step function, then
∫
fdµk =

∫
fkdµ. As k → ∞, fk → f. Since |fk| ≤ |f | ≤ supx |f(x)| < ∞,

apply BCT and we get
∫
fkdµ→

∫
fdµ.

By the case 3, ϕk(t) = exp{
∫∞
−∞

eitx−1−itx
x2 dµk(x)} is ID. since the integrand is continuous and

vanishes at infinity, ϕk → ϕ as k → ∞. Since ϕ(0) = 1 and ϕ is continuous at 0, by continuity
theorem ϕ is a ch.f. for some random variable.
In addition, EX2 ≤ lim infk EX

2
k < ∞ for X ∼ ϕ and Xk ∼ ϕk. By moment generating property

of ch.f., iEX = ϕ′(0) = 0 and −Var(X) = −µ(R). Let another ψn(t) = exp{
∫∞
−∞

eitx−1−itx
x2 dµn (x)}

then it is a ch.f. Observe that ϕ = (ψn)n so ϕ is ID.

In other words,

logϕ(t) =

∫ ∞
−∞

eitx − 1− itx
x2

dµ(x).

We call the right hand side the canonical representation of ϕ and µ the canonical measure. Note

that |e
itx−1−itx|

x2 ≤ t2 so the integral is well-defined. For x = 0, we define eitx−1−itx
x2

∣∣
x=0

= − t
2

2 by
continuity. Also note that

|eitx − 1− itx|
x2

≤ t2 ∧ 2|t|
|x|
→ 0 as |x| → ∞.

This follows from error estimation of the second-order Taylor series.
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Necessity To show the necessity part for more general class of characteristic functions, we define
the condition R.

Definition 2 (condition R). A rowwise independent triangular array (Xnk)rnk=1 satisfies R if the
followings hold.
(i) EXnk = 0, σ2

nk = EX2
nk <∞, s2

n =
∑rn
k=1 σ

2
nk > 0.

(ii) supn s
2
n <∞.

(iii) max1≤k≤rn σ
2
nk → 0 as n→∞.

For the proof of the next theorem, we need the following lemma.

Lemma 2. Let (µn) be a sequence of finite measures with supn µn(R) < ∞. There exists a sub-

sequence (µnk) and a finite measure µ such that µnk
w→ µ and

∫
hdµnk →

∫
hdµ for all h that is

continuous and vanishes at infinity.

Theorem 3 (Kolmogorov’s canonical representation ii). Let F be the limiting distribution of Sn =
Xn1 + · · · + Xnrn for some (Xnk) that satisfies R. Then ϕ, the ch.f. of F, has a unique canonical
representation:

ϕ(t) = exp

{∫ ∞
−∞

eitx − 1− itx
x2

dµ(x)

}
.

Proof. ∣∣∣∣ rn∏
k=1

ϕnk(t)︸ ︷︷ ︸
(i)

−
rn∏
k=1

eϕnk(t)−1

︸ ︷︷ ︸
(ii)

∣∣∣∣ ≤ rn∑
k=1

|ϕnk(t)− eϕnk(t)−1|

≤
rn∑
k=1

|ϕnk(t)− 1|2

≤
rn∑
k=1

(t2σ2
nk)2

≤ t4 max
1≤k≤rn

σ2
nk · s2

n → 0.

The first inequality is from 3.4.3, the second is from 3.4.4, the third is from 3.3.19, and → 0 is by
condition R. In addition,

(i)→ ϕ as n→∞

also by condition R.

(ii) =

rn∑
k=1

∫
(eitx − 1)dFnk(x)

=

rn∑
k=1

∫
eitx − 1− itx

x2
x2dFnk(x)

=

∫
eitx − 1− itx

x2
d

(
rn∑
k=1

x2Fnk(x)

)
Let µn(−∞, x] =

∑rn
k=1

∫ x
−∞ y2dFnk(y), then

(ii) =

∫
eitx − 1− itx

x2
dµn(x)
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and µn(R) = s2
n. So supn µn(R) < ∞ and there exists (µnj), µ such that µnj

w→ µ and
∫
hdµnj →∫

hdµ for all h that is continuous and vanishes at infinity. By the above mentioned fact,∫
eitx − 1− itx

x2
dµnj(x)→

∫
eitx − 1− itx

x2
dµ(x).

By convergence of (i) and (ii), the existence part of the proof is done.
For the uniqueness part, we only need to show that such µ is unique. Suppose∫

eitx − 1− itx
x2

dµ(x) =

∫
eitx − 1− itx

x2
dν(x), ∀t.

This implies
∫
eitxdµ(x) =

∫
eitxdν(x). Put t = 0 to both sides and we get c := µ(R) = ν(R).

Dividing both sides with c, µ/c and ν/c becomes probabilty measures with identical ch.f.s and the
proof is done.

5



2 Martingales

2.1 Conditional Expectation

In this chapter we study convergence of a sequence of random variables with dependency. To be
specific, I will cover theory of martingales. The first subsection is about conditional expectation
which is essential for defining martingales.

2.1.1 Definition

Definition 3 (conditional expectation). Let (Ω,F , P ) be a probability space, F0 ⊂ F be a sub σ-
algebra. For a random variable X ∈ F0, E|X| < ∞, we say Y a version of E(X|F′), conditional
expectation of X given F , if (i) Y ∈ F and (ii)

∫
A
XdP =

∫
A
Y dP for all A ∈ F .

The term “versions” means they are almost surely equivalent. So in the following sections, I will
just call such Y a conditional expectation instead of a version.

Non-negative random variables We need to know the existence of such Y and if it is unique (in
almost sure sense) if exists at all. For a non-negative X, it can be constructed as the Radon-Nikodym
derivative.

Definition 4 (absolute continuity). For measures µ, ν on a measurable space (Ω,F), we say ν is
absolutely continuous to µ and write ν � µ if µ(A) = 0 implies ν(A) for all A ∈ F .

Theorem 4 (Radon-Nikodym). Let (Ω,F) be a measurable space and µ, ν be σ-finite measures. If
ν � µ, then there exists f = dν

dµ ∈ F such that f ≥ 0 almost everywhere and ν(A) =
∫
A
fdµ for all

A ∈ F . f = dν
dµ is called the Radon-Nikodym derivative of ν with respect to µ.

Let Q(A) =
∫
A
XdP for all A ∈ F0 then Q is a σ-finite measure such that Q � P. Thus by

Radon-Nikodym theorem, there exists dQ
dP ∈ F0 such that

∫
A
XdP =

∫
A
dQ
dP dP for all A ∈ F0. By

definition dQ
dP satisfies conditions for being a conditional expectation of X given F .

Notice that for a non-negative random variable, conditional expectation exists even for random
variables that are not integrable.

General case For a general X, let Y +, Y − be conditional expectations of X+, X− respectively.
Let E(X|F0) = Y + − Y −, then clearly Y ∈ F0) and for given A ∈ F0,∫

A

XdP =

∫
A

X+dP −
∫
A

X−dP

=

∫
A

Y +dP −
∫
A

Y −dP =

∫
A

Y dP.

Uniqueness Suppose Y, Y ′ are E(X|F0) Then
∫
A

(Y − Y ′)dP = 0 for all A ∈ F0. Let A1 =
Y − Y ′ ≥ 0 and A2 =
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Y − Y ′ ≤ 0, A1, A2 ∈ F0. ∫
A1

(Y − Y ′)dP = 0 =⇒ Y − Y ′ = 0 on A1.∫
A2

(Y − Y ′)dP = 0 =⇒ Y − Y ′ = 0 on A2.

Thus Y = Y ′ almost surely.
Not only we get Y = Y ′ a.s. but we can also be sure that for any X1, X2 ∈ F that satisfy∫

A
X1dP =

∫
A
X2dP for all A ∈ F , it always follows X1 = X2 a.s.

2.1.2 Examples and insight

Think of F0 ⊂ F as the information we have at our disposal. For A ∈ F0, we can interpret it as an
event that we know whether A occurred or not. In this sense, E(X|F0) is our best guess of X given
the information we have.

Theorem 5 (best guess). Let X be a random variable such that EX2 < ∞. Let C = {Y ∈
F0 : EY 2 <∞} ⊂ L2. Then

E[X − E(X|F0)]2 = inf
Y ∈C

E(X − Y )2.

The proof requires a property yet to be mentioned, so I will leave it until the end of the section.
The following examples will help getting a grasp of the intuition behind conditional expectations.
Proofs are clear so I will not mention it.

Proposition 1 (perfect information).

X ∈ F0 =⇒ E(X|F0) = X a.s.

Proposition 2 (no information).

X ⊥ F0 =⇒ E(X|F0) = EX a.s.

Here X ⊥ F0 means

P ((X ∈ B) ∩A) = P (X ∈ B)P (A), ∀B ∈ B(R), A ∈ F0.

As an extension of undergraduate definition, we can define conditional probability.

Proposition 3 (conditional probability). (i) For (Ω,F , P ), suppose Ω = ∪∞i=1Ωi, where Ωi’s are
disjoint and P (Ωi) > 0 for all i. Let F0 = σ(Ω1,Ω2, · · · ), then

E(X|F0) =

∞∑
i=1

∫
Ωi
XdP

P (Ωi)
1Ωi .

i.e.

E(X|F0) =

∫
Ωi
XdP

P (Ωi)
on Ωi.

(ii)
P (A|F0) := E(1A|F0).

P (A|B) :=
P (A ∩B)

P (B)
.
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(ii) follows naturally from (i).
In undergraduate statistics, instead of giving σ-field, we gave random variables. This can be

regarded as a special case of our definition.

Definition 5 (conditional expectation given random variable).

E(Y |X) := E(Y |σ(X)).

Furthermore, we get some form of “conditional density”.1

Proposition 4 (conditional density). (i) Suppose X,Y have a joint density f(x, y). i.e. P ((X,Y ) ∈
B) =

∫
B
f(x, y)dxdy for all B ∈ B(R2). If E|g(X)| <∞, then

E(g(X)|Y ) = h(Y ), where h(y)

∫
f(x, y)dx =

∫
g(x)f(x, y)dx.

(ii) X ⊥ Y, ϕ : R2 → R is a Borel function such that E|ϕ(X,Y )| <∞, then

E(ϕ(X,Y )|X) = h(X), where h(x) = Eϕ(x, Y ).

Proof. (i) Since f, g are Borel, h is also a Borel function. Let (X,Y ) be a random vector on a
product space (Ω,F , P ) of (ΩX ,FX , PX) and (ΩY ,FY , PY ). Given A ∈ σ(Y ), let B ∈ B(R) so that
A = Y −1(B). ∫

A

g(X)dP =

∫
g(X)1AdP

=

∫
g(X)1B(Y )dP

=

∫ ∫
g(X)1B(Y )dPXdPY

=

∫ ∫
g(x)1B(Y )f(x, y)dxdy

=

∫
B

∫
g(x)f(x, y)dxdy

=

∫
B

h(y)

∫
f(x, y)dxdy

=

∫
A

h(Y )dP.

The third and the fifth equality is from the Fubini’s theorem.
(ii) By the Fubini’s theorem, h ∈ σ(X). Given A ∈ σ(X), let B ∈ B(R) so that A = X−1(B). Similar
to (i), we get ∫

A

h(X)dPX =

∫ ∫
ϕ(X,Y )dPY 1B(X)dPX

=

∫
ϕ(X,Y )1B(X)dP

=

∫
A

ϕ(X,Y )dPX

The second equality is from the Fubini’s theorem.
1There is a formal notion of (regular) conditional distribution. The actual conditional distribution is a function

defined on a product space of B(R) and Ω.
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2.1.3 Properties

Next I would like to cover fundamental properties of conditional expectations. These will be used
throughout this chapter.

Proposition 5. Suppose E|X| <∞, E|Y | <∞.
(i) E(aX + bY |F0) = aE(X|F0) + bE(Y |F0).
(ii) X ≥ 0 a.s. =⇒ E(X|F0) ≥ 0 a.s.

Notable result from (ii) is that |E(X|F0)| ≤ E(|X||F0).

Inequalities These are conditional version of some of the inequalities that we covered earlier in
chapter 1.

Theorem 6 (Markov). Suppose E|X| <∞, X ≥ 0.

P (X ≥ a|F0) ≤ 1

a
E(X|F0).

Proof.

P (X ≥ a|F0) ≤ E(1X≥a
X

a
|F0) ≤ 1

a
E(X|F0).

Similarly, Chebyshev’s inequality also holds for conditional expectation.

Theorem 7 (Jensen). E|X| < ∞, ϕ : R → R is convex, E|ϕ(X)| < ∞. Then E(ϕ(X)|F0) ≥
ϕ(E(X|F0)).

Proof. Note that ϕ(x) = sup{ax + b : (a, b) ∈ S} where S = {(a, b) : ax + b ≤ ϕ(x),∀x}. So
ϕ(X) ≥ aX + b for all (a, b) ∈ S.

E(ϕ(X)|F0) ≥ aE(X|F0) + b, ∀(a, b) ∈ S.
E(ϕ(X)|F0) ≥ sup{aE(X|F0) + b : (a, b) ∈ S}

= ϕ(E(X|F0)).

Convergence theorems

Theorem 8 (MCT). If Xn ≥ 0 a.s. and Xn ↑ X a.s. with E|X| <∞, then E(Xn|F0) ↑ E(X|F0)
a.s.

In fact, the condition E|X| <∞ is not required since we can always define conditional expectation
for non-negative random variables as the Radon-Nikodym derivative. I wrote the condition only
because Durrett did so.
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Proof. Note that E(Xn|F0) ≤ E(Xn+1|F0) ≤ E(X|F0) for all n. Given A ∈ F0, by using MCT
twice, ∫

A

lim
n
E(Xn|F0)dP = lim

n

∫
A

E(Xn|F0)dP

= lim
n

∫
A

XndP

=

∫
A

XdP

=

∫
A

E(X|F)dP.

Theorem 9 (DCT). Xn → X a.s. and |Xn| ≤ Y for all n where EY < ∞. Then E(Xn|F0) →
E(X|F0) a.s.

The proof is similar to that of conditional MCT.

Theorem 10 (Fatou). X ≥ 0 a.s., Then E(lim infnXn|F0) ≤ lim infnE(Xn|F0).

Proof. Given M > 0, Xn ∧M is dominated by M. There exists a subsequence (Xnk) such that
Xnk → lim infnXn. By conditional DCT,

E(lim inf
n

Xn ∧M |F) = lim
k
E(Xnk ∧M |F0)

≤ lim inf
n

E(Xn|F), ∀M > 0.

By conditional MCT, letting M ↑ ∞ gives the result.

The obvious consequences are

Bn ⊂ Bn+1 ↑ B, B = ∪∞n=1Bn =⇒ P (Bn|F0) ↑ P (B|F0).

and

Cn ∈ F0 are disjoint =⇒ P (∪∞n=1Cn|F0) =

∞∑
n=1

P (Cn|F0).

Smoothing property

Theorem 11 (smoothing property). (i) X ∈ F0, E|Y | < ∞, E|XY | < ∞. Then E(XY |F0) =
XE(Y |F0).
(ii) F1 ⊂ F2 are sub σ-fields. E|X| <∞. Then

E[E(X|F1)|F2] = E(X|F1)

and E[E(X|F2)|F1] = E(X|F1).

(i) is clear by using the standard machine. (ii) is also clear by the definition of (nested) conditional
expectations.

Finishing the section, let me prove the second theorem of this section.
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Proof of the best guess.

E(X − Y )2 = E[X − E(X|F0) + E(X|F0)− Y ]2

= E[X − E(X|F0)]2 + E[E(X|F0)− Y ]2

+ 2

((((
((((

((((
(((

((((

E[(E(X|F0)− Y )E((X − E(X|F0))|F0)]

The canceled term in the second equality is by the smoothing property. Thus E(X|F0) = arg minY ∈C E(X−
Y )2.

2.2 Martingales

Remaining sections in chapter 4 is about martingales and convergence of it. Regarding martingales,
our first topic will be convergence in almost sure sense. Next we will look into convergence in Lp,
with p > 1 and p = 1 separately. In the meantime the theory of optional stopping will be covered.

2.2.1 Martingales

Definition 6 (martingale). Let (Fn)∞n=1 be a sequence of sub σ-fields of F , (Xn) be a sequence of
random variables with Xn ∈ Fn, E|Xn| <∞ for all n. (Xn,Fn) is a martingale if E(Xn+1|Fn) = Xn

a.s., a submartingale if E(Xn+1|Fn) ≥ Xn a.s., or a supermartingale if E(Xn+1|Fn) ≤ Xn a.s.

We say Xn is adapted to Fn if Xn ∈ Fn for all n. For simplicity instead of denoting Fn to-
gether, we could just say Xn is a (sub/super)martingale if the adapted σ-fields are clear. If Xn is
a martingale,

∫
A
Xn+1dP =

∫
A
XndP for all A ∈ Fn, so trivially EXn+1 = EXn for all n. Xn is a

martingale if and only if Xn is both a submartingale and a supermartingale. In addition, if Xn is a
submartingale, then −Xn is a supermartingale.

The easiest but important examples are random walks and square martingales.

Example 1. Suppose ξ1, ξ2, · · · are i.i.d. with mean 0 and variance σ2. Let Fn = σ(ξ1, · · · , ξn).
Then
(i) Xn := ξ1 + · · · ξn is a martingale.
(ii) Xn := (ξ1 + · · ·+ ξn)2 − nσ2 is a martingale.

Though we cannot guarantee that functions of martingales are also martingales, we can say for
sure that a function of martingale is a submartingale if the function is convex.

Theorem 12 (4.2.6). For a martingale Xn, if ϕ is convex and E|ϕ(Xn)| <∞ for all n, then ϕ(Xn)
is a submartingale.

The proof is direct by conditional Jensen’s inequality. The obvious corollary is for submartingales.

Corollary 1 (4.2.7). For a submartingale Xn, if ϕ is convex, increasing and E|ϕ(Xn)| <∞ for all
n, then ϕ(Xn) is a submartingale.

The following two examples will be useful in the section comes later.

Example 2. (i) If Xn is a submartingale, then (Xn − a)+ is a submartingale.
(ii) If Xn is a supermartingale, then Xn ∧ a is a supermartingale.

11



2.2.2 Martingale convergence theorems

For martingale convergence theorems, we need to define and prove predictable sequences, stopping
times, upcrossing inequality and related properties.

Upcrossing inequality

Definition 7 (filtration). Let Fn be a sequence of sub σ-fields of F . Fn is a filtration if Fn ⊂ Fn+1

for all n.

Definition 8 (predictable sequence). For a filtration (Fn)n≥0, a sequence of random variables Hn

is predictable if Hn+1 ∈ Fn for all n ≥ 0.

Intuitively, consider n as time index. The term “predictable” is from the fact that we knows
every information about the behavior of Hn+1 in the time point n.

We get the result that the sum of submartingale increments weighted by a bounded predictable
sequence is also a submartingale.

Theorem 13 (4.2.8). Let Xn be a submartingale adapted to a filtration (Fn)n≥0. Let Hn be a
non-negative predictable sequence with |Hn| ≤Mn for some Mn > 0 for all n. Then

(H ·X)n :=

n∑
m=1

Hm(Xm −Xm−1)

is a submartingale.

Proof. (i) E|(H ·X)n| ≤
∑n
m=1MnE(|Xm|+ |Xm−1|) <∞ for all n.

(ii) Clearly, (H ·X)n ∈ Fn for all n.
(iii)

E((H ·X)n+1|Fn) = (H ·X)n + E(Hn+1(Xn+1 −Xn)|Fn)

= (H ·X)n +Hn+1((((
((((

((
{E(Xn+1|Fn)−Xn}.

We already get a glimpse of stopping times while studying coupon collector’s problem and renewal
theory. They were random variables that specifies the time that an event occurs. Here, we define it
formally.

Definition 9 (stopping time). Let N be a random variable taking values 0, 1, · · · ,∞. N is a stopping
time if {N = n} ∈ Fn for all n = 0, 1, · · · ,∞.

It is highly useful to define a predictable sequence as an indicator function related to stopping
times. With such sequence, we can easily derive the following theorem.

Theorem 14 (4.2.9). Let N be a stopping time, Xn be a submartingale. Then Xn∧N is a sub-
martingale.

Proof. Let Hm = 1m≤N then it is a non-negative bounded predictable sequence since {m ≤ N} =
{N ≤ m − 1}c ∈ Fm−1. By theorem 4.2.8 Xn∧N − X0 is a submartingale, so Xn∧N is also a
submartingale.
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As an example and a lemma for our main theorem - martingale convergence - I will state and
prove the upcrossing inequality.

Theorem 15 (upcrossing inequality). Let (Xn,Fn)n≥0 be a submartingale. For a < b, define

N2k−1 := inf{m > N2k−2 : Xm ≤ a},
N2k := inf{m > N2k−1 : Xm ≥ b},

N0 := −1,

Un = sup{k : N2k ≤ n}.

For a submartingale (Xn)n≥0,

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+.

Proof. First we show that Nm’s are stopping times. For given n,

{N1 = n} = {X0 > a, · · · , Xn−1 > a,Xn ≤ a} ∈ Fn.

{N1 = n} =

n−1⋃
`=1

{N1 = `,X`+1 < b, · · · , Xn−1 < b,Xn ≥ b} ∈ Fn.

· · ·

Thus Nm’s are stopping times. Next, we define Yn = a+(Xn−a)+ so that YN2k
≥ b and YN2k−1

= a
for all k. Since x 7→ a+ (x− a)+ is increasing and convex, Yn is also a submartingale.

(b− a)EUn ≤
Un∑
k=1

(YN2k
− YN2k−1

)

=

Un∑
k=1

∑
i∈Jk

(Yi − Yi−1),

where Jk = {N2k−1 + 1, · · · , N2k}

=
∑
m∈J

(Ym − Ym−1),

where J = ∪Unk=1Jk

≤
n∑

m=1

1m∈J(Ym − Ym−1).

Let Hm = 1m∈J , then since

{m ∈ J} = {N2k−1 < m ≤ N2k for some k}

Hm is a bounded, non-negative predictable sequence. Thus

(b− a)Un ≤ (H · Y )n

and the right hand side is a submartingale. Let Km = 1 − Hm then similarly (K · Y )n is a
submartingale and E(K · Y )n ≥ 0. Hence

E(Yn − Y0) = E(H · Y )n + E(K · Y )n

≥ E(H · Y )n ≥ (b− a)EUn.

13



We call Un the number of upcrossings. An important fact directly follows from the theorem is
EUn ≤ 1

b−a (EX+
n + |a|). This will be the key to prove the martingale convergence.

Martingale convergence theorems We get our first convergence theorem for dependent se-
quence.

Theorem 16 (submartingale convergence). For a submartingale Xn, if supnX
+
n < ∞, then there

exists X ∈ L1 such that Xn → X a.s.

Proof. Given a < b, let Un[a, b] be the number of upcrossings of X1, · · · , Xn over [a, b]. By the

upcrossing inequality, EUn[a, b] ≤ EX+
n +|a|
b−a . Let U [a, b] = limn Un[a, b] then

EU [a, b] = lim
n
EUn[a, b] ≤ sup

n

EX+
n + |a|
b− a

<∞.

Thus by Markov’s inequality, 0 ≤ U [a, b] ≤ ∞ a.s.
Now suppose lim infnXn < lim supnXn. Then for some a < b, Xn < a and Xn > b infinitely often.
Thus

P (lim inf
n

Xn < lim sup
n

Xn) = P (lim inf
n

Xn < a < b < lim sup
n

Xn for some a, b ∈ Q)

≤
∑
a,b∈Q

P (lim inf
n

Xn < a < b < lim sup
n

Xn)

=
∑
a,b∈Q

P (U [a, b] =∞) = 0

so there exists X such that Xn → X a.s. We now need to show that such X is integrable. By
Fatou’s lemma,

EX+ ≤ lim inf
n

EX+
n ≤ sup

n
EX+

n <∞.

EX− ≤ lim inf
n

EX−n = lim inf
n

E(X+
n −Xn)

≤ sup
n
EX+

n − EX0 <∞.

As a corollary, we get supermartingale convergence and closability of negative submartingales.

Corollary 2 (supermartingale convergence). Let Xn ≥ 0 be a supermartingale. There exists X ∈ L1

such that Xn → X a.s. and EXn ≤ EX0.

Corollary 3 (closability). If Xn, n = 1, 2, · · · is a negative submartingale, then Xn, n = 1, 2, · · · ,∞
is also a negative submartingale.

The next example show that even if a martingale converges almost surely, we cannot guarantee
Lp convergence. The following sections will be about in which condition does a martingale converges
in Lp.

Example 3. Let ξ1, · · · be i.i.d. with P (ξ1 = 1) = P (ξ1 = −1) = 1
2 . Let Sn = ξ1 + · · ·+ ξn, S0 = 1

and Fn = σ(ξ1, · · · , ξn), F0 = {φ,Ω} then Sn is a martingale. Let N = inf{n ≥ 1 : Sn = 0} be a
stopping time, then Xn := Sn∧N ≥ 0 is also a martingale. Xn → 0 a.s. but Xn → 1 in L1.

14



Proof. By supermartingale convergence, Xn → X for some X ∈ L1. Note that on (N = ∞),
Xn = Sn. By the law of iterated logarithm, P (lim infn Sn = −∞, lim supn Sn = ∞) = 1. It follows
that

P (N =∞) = P (N =∞, lim inf
n

Sn = −∞, lim sup
n

Sn =∞)

= P (N =∞, lim inf
n

Xn = −∞, lim sup
n

Xn =∞)

≤ P (lim inf
n

Xn = −∞, lim sup
n

Xn =∞) = 0.

and N <∞ a.s. Hence X = limn Sn∧N = SN = 0 a.s.
However, E|Xn| = ESn∧N = ES0 = 1 for all n since Xn is a martingale.

2.3 Applications of Martingales

For applications of martingales, I would like to cover the case of martingales with bounded increments
and the branching process.

2.3.1 Martingales with bounded increments

Before getting to the topic, I would like to state a very useful theorem when constructing a
(sub)martingale.

Theorem 17 (Doob’s decomposition). Let (Xn) be a submartingale. There uniquely exists (Mn)
and (An) where the former is a martingale and the latter is an increasing predictable sequence with
A0 = 0.

The uniqueness in the statement is in almost sure sense.

Proof. Let An = An+1+(E(Xn|Fn−1)−Xn−1, A0 = 0. It is clear that An is an increasing predictable
sequence. Let Mn = Xn −An accordingly, then it is a martingale.
Now suppose Xn = Mn +An = M ′n +A′n. Then Mn −M ′n = A′n −An ∈ Fn−1 and

Mn −M ′n
= E(Mn −M ′n|Fn−1)

= Mn−1 −M ′n−1.

Thus Mn −M ′n = A′0 −A0 = 0 for all n and the uniqueness follows.

The theorem insists that every submartingales can be decomposed into an increasing sequence
and a martingale. The important part is where we constructed An. Since A0 = 0,

An =

n∑
m=1

(E(Xm|Fm−1)−Xm−1)

=

n∑
m=1

E(Xm −Xm−1|Fm−1).

This gives us a form of conditional increment. In quite a lot of situations constructing a sequence
like this leads to a (sub)martingale with bounded increments.

The main theorem of this subsection is a dichotomy that applies to martingales with bounded
increments.

15



Theorem 18 (4.3.1). Let (Xn) be a martingale with |Xn+1 −Xn| ≤M <∞ for all n. Let

C = {Xn converges},
D = {lim inf

n
Xn = −∞, lim sup

n
Xn =∞}.

Then P (C ∪D) = 1.

Proof. Without loss of generality, let X0 = 0. For k > 0, let Nk = inf{n : Xn ≤ −k} be a stopping
time so that Xn∧Nk also be a martingale. If Nk = ∞, Xn∧Nk = Xn > −k for all n. If Nk < ∞,
XNk ≤ −k and Xt > −k for t = 1, 2, · · · , Nk − 1, thus XNk = XNk−1 + (XNk −XNk−1) ≥ −k −M.
Since Xn∧Nk +k+m is a non-negative martingale, by supermartingale convergence Xn∧Nk converges
a.s.
This implies Xn converges on {Nk = ∞}. Since lim infnXn > −∞ implies Xn ≥ −k′ for all but
finite n’s, for some k′ and so Nk′+1 =∞, we get

{lim inf
n

Xn > −∞} ⊂
∞⋃
k=1

{Nk =∞}.

Apply the same to (−Xn) and we get

{lim sup
n

Xn <∞} ⊂
∞⋃
k=1

{Nk =∞}.

Hence Dc ⊂ C and it follows that P (C ∪D) = 1.

As a corollary we get an extension of the second Borel-Cantelli lemma for dependent sequence.

Corollary 4 (the second B-C lemma (2)). Let (Fn)n≥0 be a filtration with F0 = {φ,Ω}. Suppose
An ∈ Fn for all n ≥ 1. Then

{An i.o.} = {
∞∑
n=1

P (An|Fn−1) =∞}.

Proof. Let Xn =
∑n
m=1(1Am − P (Am|Fm−1)), X0 = 0. Then it is easy to check that Xn is a

martingale with bounded increment.By the dichotomy, we get C or D almost surely.
On C, in order to make Xn convergent,∑

n

1An =∞ ⇐⇒
∑
n

P (An|Fn−1) =∞.

On D, ∑
n

1An ≥ lim sup
n

Xn =∞,∑
n

P (An|Fn−1) ≥ lim sup
n

(−Xn) =∞.

Thus in any case, the desired result follows.

Notice that Xn in the proof is in the form of An from Doob’s decomposition.
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2.3.2 Braching process

Definition 10 (branching process). Let ξni be i.i.d. non-negative integer-valued random variables.
Let

Z0 = 1, Zn+1 =

{
ξn+1
1 + · · ·+ ξn+1

Zn
, Zn ≥ 0

0 , Zn = 0

and Fn = σ(ξmi : i ≥ 0, 1 ≤ m ≤ n). (Zn) is called a branching process.

Think of ξni as the number of offsprings that nth individual produce in ith generation. Zn
naturally be the total number of offsprings in nth generation. By construction, Zn’s are independent.

Lemma 3 (4.3.10). Let µ = Eξni , then (Znµn ,Fn) is a martingale.

Proof. It is clear that Zn/µ
n ∈ Fn and is integrable for all n.

E(Zn+1|Fn) = E(Zn+1

∞∑
k=0

1Zn=k|Fn)

=

∞∑
k=0

E(Zn+11Zn=k|Fn)

=

∞∑
k=0

E(

k∑
i=1

ξn+1
i 1Zn=k|Fn)

=

∞∑
k=0

1Zn=kkµ

=

∞∑
k=0

1Zn=kZnµ = Znµ.

Using this, we can confirm our naturale guess that the population will be extinct if the average
number of offsprings per individual is below 1.

Theorem 19 (4.3.11). If µ < 1 then Zn = 0 a.s. for all but finite n’s.

Proof. P (Zn > 0) = E1Zn>0 ≤ EZn1Zn>0 = EZn. By the lemma, E(Znµn ) = E(Z0

µ0 ) = 1 thus
EZn = µn.

∞∑
n=1

P (Zn > 0) ≤
∞∑
n=1

µn <∞.

By the first Borel-Cantelli lemma, P (Zn = 0 eventually) = 1.

2.4 Convergence in Lp, p > 1

In this section we look into the condition that makes a martingale converges in Lp, p > 1 in detail.
We start by proving Doob’s inequality. By using this result we prove martingale inequalities which
will then be used to prove Doob’s Lp maximal inequality. Lp convergence is direct from them. Lastly,
as an extension of Doob’s inequality, I will brief a version of optional stopping.
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2.4.1 Martingale inequalities

Theorem 20 (Doob’s inequality). Let Xn be a submartingale, N be a stopping time such that N ≤ k
a.s. Then

EX0 ≤ EXN ≤ EXk.

Proof. (i) Observe that Xn∧N is also a submartingale. Thus EX0∧N ≤ EXk∧N and we get the first
inequality.
(ii) Let Kn = 1N≤n−1 be a non-negative bounded predictable sequence then (KẊ)n = Xn −Xn∧N
is a submatringale. Thus 0 = E(K ·X)0 ≤ E(K ·X)k which leads to the second inequality.

This natural result will be the foundation of numerous theorems that will be introduced from
now on. For simplicity, I will call stopping times with almost sure upper bound bounded stopping
times.

Theorem 21 (submartingale inequality). Let Xn be a submartingale. Define X̄n = max0≤m≤nXm.
For λ > 0,

λP (X̄n ≥ λ) ≤ EXn1X̄n≥λ.

Proof. Let A = {X̄n ≥ λ}. Let N = inf{m : Xm ≥ λ} ∧ n be a bounded stopping time. Since
λ1A ≤ XN1A, λP (A) ≤ EXN1A.
On A, EXN ≤ EXn by Doob’s inequality. On Ac, N = n a.s. Thus in either case EXN1A ≤ EXn1A
and we get the result.

A more comprehensive form might be

P (X̄n ≥ λ) ≤ 1

λ
EXn1X̄n≥λ,

which can be viewed as a version of inequality that resembles Chebyshev’s inequality.
Similarly, we can also derive supermartingale inequality.

Theorem 22 (supermartingale inequality). Let Xn be a supermartingale. For λ > 0,

λP (X̄n ≥ λ) ≤ EX0 − EXn1X̄n<λ.

Proof. Let A and N as in the proof of submartingale inequality. The result is direct from

EX0 ≥ EXN = EXN1A + EXN1Ac .

2.4.2 Lp convergence theorem

With the help of submartingale inequality, we get the following theorem.

Theorem 23 (Doob’s maximal inequality). Let Xn be a non-negative submartingale. For 1 < p <
∞,

EX̄p
n ≤

(
p

p− 1

)p
EXp

n.

18



Proof. Let M > 0. By properly using Foubini’s theorem

E(X̄n ∧M)p =

∫ ∞
0

P ((X̄n ∧M)p ≥ t)dt

=

∫ ∞
0

P (X̄n ∧M ≥ λ)pλp−1dλ

=

∫ M

0

P (X̄n ≥ λ)pλp−1dλ

≤
∫ M

0

1

λ
EXn1X̄n≥λpλ

p−1dλ

=

∫ M

0

∫
Ω

Xn1X̄n≥λdPpλ
p−2dλ

=
p

p− 1
EXn(X̄n ∧M)p−1

≤ p

p− 1
(EXp

n)1/p(E(X̄n ∧M)p)1/q

The first inequality is follows submartingale inequality and the second one is from Holder’s inequality.
Transposition and applying MCT (M ↑ ∞) leads to the result.

It is often called Lp maximal inequality. Note that we used X̄n ∧M in order to prove that the
inequality holds even if EX̄n is not finite. Lp convergence of a martingale is derived from this.

Theorem 24 (Lp convergence). Let Xn be a martingale with supnE|Xn|p < ∞. For p > 1, there
exists X such that Xn → X a.s. and in Lp.

Proof. By submartingale convergence, there exists X ∈ L1 such that Xn → X a.s. By MCT and Lp

maximal inequality,
E sup

n
|Xn|p = lim

n
E max

0≤m≤n
|Xm|p

≤ lim
n

(
p

p− 1

)p
E|Xn|p

≤
(

p

p− 1

)p
sup
n
E|Xn|p <∞.

Thus |Xn −X|p ≤ (2 supn |Xn|p) is integrable and by DCT, the result follows.

2.4.3 Bounded optional stopping

As a sidenote, I would like to cover the fact that bounded stopping times preserve submartingale
properties.

Definition 11. For a stopping time τ,

Fτ := {A ∈ F : A ∩ (τ = n) ∈ Fn,∀n}

It is not difficult to check that Fτ is a sigma-field with τ ∈ Fτ .

Theorem 25 (bounded optional stopping). Let Xn be a submartingale, σ, τ be stopping times that
0 ≤ σ ≤ τ ≤ k a.s. Then E(Xτ |Fσ) ≥ Xσ a.s.
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The proof can be done in two different ways. The first proof uses Doob’s inequality.

Proof. Since Yn∧τ is a submartingale, by Doob’s inequality EYσ ≤ EYτ . For given A ∈ Fσ, let

N =

{
σ on A

τ on Ac

Then N is a stopping time since

(N = n) = ((σ = n) ∩A) ∪ ((τ = n) ∩ (σ ≤ n) ∩Ac) ∈ Fn.

Hence
EYN = EYσ1A + EYτ1

c
A ≤ EYτ .∫

A

YσdP ≤
∫
A

YτdP =

∫
A

E(Yτ |Fσ)dP.

The second approach uses the lemma and inductive process:

Lemma 4.
E(Xτ |Fσ)1σ=n = E(Xτ |Fn)1σ=n a.s.

Proof. We first show that the right hand side is Fσ-measurable. Given a ∈ R and k ≥ 0,

(E(Xτ |Fn)1σ=n ≤ a) ∩ (σ = k)

=

{
(E(Xτ |Fn) ≤ a) ∩ (σ = k) ∈ Fk , k = n

(0 ≤ a) ∩ (σ = k) ∈ Fk , otherwise

Next for given A ∈ Fσ, ∫
A

E(Xτ |Fσ)1σ=ndP

=

∫
A∩(σ=n)

E(Xτ |Fσ)dP

=

∫
A∩(σ=n)

XτdP

=

∫
A∩(σ=n)

E(Xτ |Fn)dP

=

∫
A

E(Xτ |Fn)1σ=ndP.

Proof of bounded optional stopping. it sufficies to show that for all A ∈ Fn∫
A

E(Xτ |Fσ)1σ=ndP ≥ E(Xτ |Fn)1σ=n.
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Given A ∈ Fn, ∫
A

E(Xτ |Fσ)1σ=ndP − E(Xτ |Fn)1σ=n

=

∫
A∩(σ=n)

E(Xτ |Fn)−XndP

=

∫
A∩(σ=n)

Xτ −XndP

=

∫
A∩(σ=n)∩(τ≥n+1)

Xτ −XndP

≥
∫
A∩(σ=n)∩(τ≥n+1)

Xτ −Xn+1dP

=

∫
A∩(σ=n)∩(τ≥n+2)

Xτ −Xn+1dP

· · ·

≥
∫
A∩(σ=n)∩(τ=k)

Xτ −XkdP = 0.

2.5 Convergence in L1

In the previous section, we covered the condition where martingales converges in Lp. We only covered
the case where p > 1. In this section, the notions of uniform integrability is introduced to compensate
convergence in p = 1 case.

2.5.1 Uniform integrability

If a random variable X is integrable,
∫
‖X‖ ≥ a‖X‖dP < ε for all ε > 0 for large a and vice versa.

Intuitively, in order for a random variable to be integrable, integration of its tail part should be
bounded for any small ε. Uniform integrability is defined accordingly.

Definition 12 (uniform integrability). (Xt)t∈T is uniformly integrable if lima supt∈T
∫
|Xt|≥a |Xt|dP =

0.

If Xt ≤ X for all t ∈ T where X is integrable, (Xt) is uniformly integrable. If (Xt), (Yt) are
uniformly integrable, then (Xt + Yt) is uniformly integrable since for given a > 0∫

|Xt+Yt|≥a
|Xt + Yt|dP

≤
∫
|Xt|+|Yt|≥a,|Xt|≥|Yt|

|Xt|+ |Yt|dP

+

∫
|Xt|+|Yt|≥a,|Xt|<|Yt|

|Xt|+ |Yt|dP

≤
∫

2|Xt|≥a
2|Xt|dP +

∫
2|Yt|≥a

2|Yt|dP.

The next theorem which sometimes is referred to as Vitali’s lemma is about necessary and
sufficient condition for uniform integrability.
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Theorem 26. (Xt)t∈T is uniformly integrable if and only if the followings hold.
(i) supt∈T E|Xt| <∞.
(ii) ∀ε > 0,∃δ > 0 such that supt∈T

∫
A
|Xt|dP ≤ ε for all A ∈ F where P (A) ≤ δ.

Proof. (⇒) (i) is clear. Given A ∈ F , a > 0,∫
A

|Xt|dP

=

∫
A∩{|Xt|≥a}

|Xt|dP +

∫
A∩{|Xt|<a}

|Xt|dP

≤
∫
|Xt|≥a

|Xt|dP + aP (A)

Thus supt
∫
A
|Xt|dP ≤ ε/2 + aδ.

(⇐) Let M = suptE|Xt| < ∞, a0 = M/δ. Since P (|Xt| ≥ a0) ≤ E|Xt|/a0 ≤ M/a0 = δ,
supt

∫
|Xt|≥a0 |Xt|dP ≤ ε.

We state our main theorem of this subsection.

Theorem 27 (Vitali). Suppose Xn → X, Xn ∈ Lp, p ≥ 1. The followings are equivalent.
(i) (|Xn|p) is uniformly integrable.
(ii) Xn → X in Lp.
(iii) E|Xn|p → E|X|p <∞.

Proof. ((i)⇒(ii)) By Fatou’s lemma, E|X|p ≤ ∞. |Xn −X|p ≤ 2p(|Xn|p + |X|p) makes |Xn −X|p
uniformly integrable. By the theorem, given ε > 0 there exists δ > 0 such that supt∈T

∫
A
|Xt|dP ≤ ε

for all A ∈ F where P (A) ≤ δ. There exists N such that for all n ≥ N, P (|Xn −X|p ≥ ε) ≤ δ. Thus

E|Xn −X|p = E|Xn −X|p1|Xn−X|p≥ε + E|Xn −X|p1|Xn−X|p<ε ≤ 2ε.

((ii)⇒(iii)) Trivial by |‖Xn‖p − ‖X‖p| ≤ ‖Xn −X‖p.
((iii)⇒(i)) Given a ∈ R such that P (|X|p = a) = 0.

claim: |Xn|p1|Xn|p≤a
P→ |X|p1|X|p≤a.

For all δ > 0,

P (|1|Xn|p≤a − 1|X|p≤a| > ε)

≤ P (|Xn|p ≤ a, |X|p > a) + P (|Xn|p > a, |X|p ≤ a)

≤ P (|Xn|p ≤ a, |X|p > a+ δ) + P (|Xn|p > a, a− δ < |X|p ≤ a)

+ P (|Xn|p > a, |X|p ≤ a− δ) + P (|Xn|p > a, a− δ < |X|p ≤ a)

≤ 2P (||Xn|p − |X|p| > δ) + P (a < |X|p ≤ a+ δ) + P (a− δ < |X|p ≤ a)

Thus as δ → 0,
lim sup

n
P (|1|Xn|p≤a − 1|X|p≤a| > ε) ≤ 0 + P (|X|p = a) = 0.

By the claim and since |Xn|p1|Xn|p≤a is bounded by a, (|Xn|p1|Xn|p≤a) is uniformly integrable. By
(i)⇒(ii)⇒(iii), E|Xn|p1|Xn|p≤a → E|X|p1|X|p≤a. In addition, by the assumption E|Xn|p1|Xn|p>a →
E|X|p1|X|p>a. For a given ε > 0, there exists a0 > 0 such that E|X|p1|X|p>a0 < ε/2 and P (|X|p =

a0) = 0. Pick N such that
∣∣E|Xn|p1|Xn|p>a0 − E|X|p1|X|p>a0

∣∣ < ε/2 for all n ≤ N. Then for n ≥ N,
E|Xn|p1|Xn|p>a0 < ε. For n < N, there exists a1 such that maxn<N E|Xn|p1|Xn|p>a0 < ε.
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2.5.2 L1 convergence of martingales

With uniform integrability we get L1-convergence of martingales. First we define regular and closable
martingale for simplicity of the statement.

Definition 13. A martingale (Xn) is regular if there exists a random variable X ∈ L1 such that
Xn = E(X|Fn) a.s. (Xn) is closable if there exists a random variable X∞ ∈ L1 such that Xn → X∞
a.s. and E(X∞|Fn) = Xn a.s. for all n.

If Xn is closable, then it is clearly a regular martingale.

Theorem 28 (4.6.7). Let Xn be a martingale. The followings are equivalent.
(i) Xn is regular.
(ii) Xn is uniformly integrable.
(iii) Xn converges a.s. and in L1

(iv) Xn is closable.

Proof. ((i)⇒(ii)) There exists X ∈ L1 such that Xn = E(X|Fn) a.s.∫
|Xn|≥a

|Xn|dP ≤
∫
|Xn|≥a

E(|X||Fn)dP ≤
∫
E(|X||Fn)≥a

|X|dP.

Since X is integrable, for a given ε > 0 there exists δ > 0 such that
∫
A
|X|dP < ε for all A such that

P (A) ≤ δ and there exists a > 0 such that P (E(|X||Fn) ≥ a) ≤ 1
aE|X| < δ.

((ii)⇒(iii)) Uniform integrability implies supn |Xn| < ∞ so by submartingale convergence we get
convergence in probability. By Vitali’s lemma, we get the result.
((iii)⇒(iv)) There exists X ∈ L1 such that E|Xn − X| → 0 as n → ∞. Then E|Xn| → E|X| and
supnE|Xn| < ∞. By submartingale inequality, there exists X∞ ∈ L1 such that Xn → X∞ a.s.
Notice that X = X∞ a.s. Let m ≥ n then

E |E(X∞|Fn)−Xn|
= E |E(X∞|Fn)− E(Xm|Fn)|
≤ E |E(|X∞ −Xm||Fn)|
= E|X∞ −Xm| → 0

as m→∞. Hence E(X∞|Fn) = Xn a.s.
((iv)⇒(i)) Trivial.

Consider a sequence of conditional expectations E(X‖Fn) with fixed X. By using the theorem
from previous subsection we can determine convergence of this sequence as well.

2.5.3 Levy’s theorem

Theorem 29 (Levy’s theorem). Let X be an integrable random variable and (Fn) be a filtration.
then E(X|Fn)→ E(X|F∞) a.s. where F∞ = σ (∪nFn) .

Proof. Let Xn = E(X|Fn) then Xn is a closable, thus regular, martingale and there exists X∞ such
that Xn → X∞ a.s. It suffices to show that X∞ = E(X|F∞) a.s. We show this with π-λ theorem.
Let L = {A :

∫
A
X∞dP =

∫
A
XdP} be a λ-system. Then ∪nFn ⊂ L and ∪nFn is a π-system. By

π-λ theorem F∞ ⊂ L thus X∞ = E(X|F∞) a.s.
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Similar result holds for a sequence (Xn) uniformly dominated by an integrable random variable.

Theorem 30. Suppose Xn → X a.s., |Xn| ≤ Z,∀n, E|Z| <∞ then E(Xn|Fn)→ E(X|F∞) a.s.

Proof. Let Wn = supk,l≥n |Xk − Xl| then Wn ↓ 0 a.s. and |Xn − X| ≤ Wm for all m ≤ n and
Wn ≤ 2Z. By the previous theorem we only need to show E(|Xn −X| |Fn)→ 0 a.s. Given m,

lim sup
n

E(|Xn −X| |Fn) ≤ lim
n
E(Wm|Fn) = E(Wm|F∞).

By conditional DCT, E(Wm|F∞)→ 0 a.s. as m→∞. Thus E(|Xn −X| |Fn)→ 0 a.s. With Levy’s
theorem and triangle inequality the desired result follows.

2.5.4 Riez’s decomposition

We know that any submartingales can be decomposed into a martingale and a predictable sequence
(Doob’s decomposition). Riez’s decomposition allows us to do the similar to uniformly integrable
non-negative supermartingales.

Definition 14 (potential). A supermartingale (Xn) is a potential if it is non-negative and EXn → 0
a.s.

Two notable properties of potentials is that (i) Xn → 0 a.s. and (ii) (Xn) is uniformly integrable.
(i) is from supermartingale convergence and Fatou’s lemma. (ii) follows from E‖Xn‖ ≤ ε for large
n for all ε > 0.

Theorem 31 (Riez). For a non-negative uniformly integrable supermartingale (Xn), there uniquely
exist a uniformly integrable martingale (Mn) and a potential (Vn) so that Xn = Mn + Vn.

Proof. By supermartingale convergence, there exists X∞ such that Xn → X∞ a.s. Let Mn =
E(X∞|Fn) be a regular, thus uniformly integrable martingale. It is enough to show that Vn :=
Xn −Mn is a potential.

E(Vn+1|Fn) = E(Xn+1|Fn)− E(Mn+1|Fn) ≤ Xn −Mn = Vn a.s.

Thus Vn is a supermartingale.

E(X∞|Fn) ≤ lim inf
m

E(Xm|Fn) ≤ Xn a.s.

for all fixed n. Thus Vn ≥ 0 for all n. Now by Levy’s theorem,

lim
n
Vn = X∞ − lim

n
E(X∞|Fn) = 0 a.s.

Since (Xn), (Mn) are uniformly integrable, (Vn) is also. By Vitali’s lemma EVn → E limn Vn = 0.
Thus Vn is a potential.
For the uniqueness part, let Mn + Vn = M ′n + V ′n, Mn = E(η1|Fn) a.s. and M ′n = E(η2|Fn) a.s.

Mn −M ′n = V ′n − Vn = E(η1|Fn)− E(η2|Fn)→ 0 a.s.

since Vn, V
′
n are potentials. By Levy’s theorem this implies E(η1|F∞)− E(η2|F∞) = 0 a.s.

Mn = E (E(η1|F∞)|Fn)

= E (E(η2|F∞)|Fn)

= E(η2|Fn) = M ′n a.s.

Equivalence of Vn, V
′
n directly follows.
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2.6 Square Integrable Martingales

In this section, we look into martingales with special property - square integrability. Square inte-
grability gives martingale an upper bound for maximal expectation so that it can further be used
to determine the convergence of the sequence.

2.6.1 Square integrable martingales

Definition 15 (square integrable martingale). A martingale Xn is square integrable if EX2
n < ∞

for all n.

In the following discussion, we assume X0 = 0. Notice that X2
n is a submartingale and if we

let An = A n− 1 + E(X2
n‖Fn−1) − X n− 12, A0 = 0, which is from Doob’s decomposition, then

EX2
n = EAn and

An =

n∑
m=1

(
E(X2

m|Fm−1)−X2
m−1

)
=

n∑
m−1

E
(
(Xm −Xm−1)2|Fm−1

)
.

Theorem 32. For a square integrable martingale Xn, let A∞ = limnAn. The followings hold.
(i) E supnX

2
n ≤ 4EA∞.

(ii) E supn |Xn| ≤ 3EA
1
2∞

(iii) limnXn exists and is almost surely finite on {A∞ <∞}.
(iv) If f : R → R is increasing and

∫∞
0
f−2(t)dt < ∞, f(t) ≥ 1,∀t, then Xn

f(An) → 0 a.s. on

{A∞ =∞}.

Proof. (i) is direct from Lp maximal inequality.
(ii) Let Na = inf{n : An+1 > a2}, then it is a stopping time.

P (sup
n
|Xn| > a) = P (sup

n
|Xn| > a,N <∞) + P (sup

n
|Xn| > a,N =∞)

≤ P (N <∞) + P (sup
n
|Xn∧N > a)

= P (N <∞) + lim
n
P ( sup

m≤n
|Xm∧N | > a)

≤ P (N <∞) +
1

a2
lim
n
E|Xn∧N |2

= P (N <∞) +
1

a2
lim
n
EAn∧N

≤ P (N <∞) +
1

a2
E(A∞ ∧ a2)

= P (A∞ > a2) +
1

a2
E(A∞ ∧ a2).

The last inequality is from the fact that

EAn∧N ≤ EAN ≤ a2 on {N <∞}, EAn ≤ EA∞ ≤ a2 on {N =∞}.

25



Using this, Fubini’s theorem and integration by substitution, we get

E sup
n
|Xn| =

∫
P (sup

n
|Xn| ≥ a)da

≤
∫ ∞

0

P (A1/2
∞ > a)da+

∫ ∞
0

1

a2
E(A∞ ∧ a2)da

= EA1/2
∞ +

∫ ∞
0

1

a2

∫ a2

0

P (A∞ > b)dbda

= 3EA1/2
∞ .

(iii) Given a > 0, by (i), E supnXn∧Na ≤ 4a2 < ∞. By submartingale convergence, Xn∧Na
converges a.s. and in L2. Now let Ck = {Xn∧Nk converges}, then P (Ck) = 1 and P (∩kCk) = 1 as
well. For an arbitrary ω ∈ (∩kCk) ∩ (A∞ <∞), Nk(ω) = inf{n : An(ω) ≥ k} =∞ for large enough
k since A∞(ω) <∞. Hence Xn∧Nk(ω) = Xn(ω) converges.

(iv) Let Hm = 1
f(Am) be a bounded predictable sequence. Then Yn := (H ·X)n =

n∑
m=1

Xm−Xm−1

f(Am) is

a square integrable martingale. Let Bn =
n∑

m=1
E
(
(Ym − Ym−1)2|Fm−1

)
, then

B∞ =

∞∑
m=0

Am+1 −Am
f(Am+1)2

≤
∞∑
m=0

∫ Am+1

Am

f−2(t)dt

≤
∫ ∞

0

f−2(t)dt <∞ a.s.

By (iii), limn Yn exists and is finite almost surely. By Kronecker’s lemma, it suffices to show that
f(An) ↑ ∞. Since

∫∞
0
f−2(t)dt < ∞, limt f(t) should be ∞ otherwise it gives contradiction. Since

An, f is increasing and f(A∞) =∞ on (A∞ =∞), this is true.

From the facts, we get another form of conditional Borel-Cantelli lemma.

Theorem 33 (the second B-C lemma (3)). Let Bn ∈ Fn for all n ≥ 0 and pn = P (Bn|Fn−1), n ≥ 1.
Then ∑∞

n=1 1Bn∑∞
n=1 pn

→ 1 a.s. on

{ ∞∑
n=1

pn =∞

}
.

Proof. Let Xn = Xn−1 + 1Bn − P (Bn|Fn−1), X0 = 0 be a square integrable martingale. Then An

from Doob’s decomposition yields Am −Am−1 = pm − p2
m and An =

n∑
m=1

pm − p2
m ≤

n∑
m=1

pn.

On (A∞ <∞), Xn converges a.s.

Xn∑n
m=1 pm

=

∑n
m=1 1Bm∑n
m=1 pm

− 1→ 0 a.s. on (

∞∑
n=1

pn =∞).

On (A∞ = ∞), let f(t) = 1 ∨ t so that such f satisfies conditions in (iv) of the previous theorem.
Then Xn

f(An) = Xn
An∨1 → 0 a.s. on (A∞ = ∞). Since An ≤

∑n
m=1 pm, we get Xn∑n

m=1 pm
→ 0 a.s. on

(A∞ =∞).
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2.7 Optional Stopping Theorem

In this section, we generalize the bounded version of optional stopping. After that as an example
we will cover theorem regarding assymetric random walk.

2.7.1 Optional stopping theorem

Our first theorem will be the extension of theorem 4.2.9.

Theorem 34 (4.8.1). Let (Xn) be a uniformly integrable submartingale and N be a stopping time.
Then (Xn∧N ) is a uniformly integrable submartingale.

Proof. It is shown that (Xn∧N ) is a submartingale in theorem 4.2.9. By Vitali’s lemma Xn converges
almost surely and in L1 to some X∞. Since x 7→ x+ is convex and increasing, X+

n , X
+
n∧N are

submartingales. Let τ = n, σ = n ∧N then τ, σ are bounded stopping times. By Doob’s inequality,
EX+

n∧N ≤ EX+
n and

sup
n
EX+

n∧N ≤ sup
n
EX+

n ≤ sup
n
E|Xn| <∞.

By Submartingale convergence, Xn∧N → XN a.s. and E|XN | <∞.

E|Xn∧N |1|Xn∧N |≥a
≤ E|Xn∧N |1|Xn∧N |≥a,N≤n + E|Xn∧N |1|Xn∧N |≥a,N>n
= E|XN |1|XN |≥a + E|Xn|1|Xn|≥a.

Since both terms on the right-hand side goes to 0 as a→∞, Xn∧N is uniformly integrable.

Next theorem is the unbounded version of Doob’s inequality.

Theorem 35 (4.8.3). Let (Xn) be a uniformly integrable submartingale, N be a stopping time. Then

EX0 ≤ EXN ≤ EX∞

where X∞ = limnXn a.s.

Proof. By the previous theorem Xn∧N is a uniformly integrable submartingale. By Doob’s inequality

EX0 ≤ EXn∧N ≤ EXn.

By Vitali’s lemma, EXn → EX∞ and

lim
n
Xn∧N =

{
XN , N <∞
X∞ = XN , N =∞

Thus Xn∧N → XN a.s. with E|XN | <∞ by Vitali’s lemma and the desired result follows.

Finally we state and prove the main theorem.

Theorem 36 (optional stopping). Let L ≤ M be stopping times and (Yn∧M ) be a uniformly inte-
grable submartingale. Then EYL ≤ EYM and YL ≤ E(YM |FL) a.s.

Proof. Let Xn = Yn∧M then it directly follows that EYL ≤ EYM . The rest of the proof is the same
as the first proof of bounded stopping theorem.
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Note that we do not need uniform integrability of Yn. The next theorem guarantees uniform
integrability of stopped martingale of submartingale with uniformly bounded conditional increment.

Theorem 37 (4.8.5). Let Xn be a submartingale with E (|Xn+1 −Xn| |Fn) ≤ B a.s. and N be a
stopping time with EN <∞. Then Xn∧N is uniformly integrable and EX0 ≤ EXN .

Proof.

Xn∧N = X0 +

n∑
m=1

(Xm −Xm−1)1m≤N |Xn∧N | ≤ |X0|+
n∑

m=1

|Xm −Xm−1|1m≤N

Let Z be the right-hand side of the inequality.

E|Z| ≤ E|X0|+
∑
m

|Xm −Xm−1|1m≤N

≤ E|X0|+
∑
m

E (1m≤NE(|Xm −Xm−1| |Fm−1))

≤ E|X0|+B ·
∑
m

P (m ≤ N)

= E|X0|+B · EN <∞.

Thus Z is integrable and Xn∧N is uniformly integrable. EX0 ≤ EXN follows directly.

2.7.2 Assymetric random walk

As an application of optional stopping, we look into properties of assymetric random walk. We
define assymetric random walk Sn = ξ1 + · · ·+ ξn, S0 = 0 where ξi’s are i.i.d. with P (ξ1 = 1) = p,
P (ξ1 = −1) = q, p+ q = 1. Let
textV ar(ξ1) = σ2 <∞ and Fn = σ(ξ1, · · · , ξn) for n ≥ 1, F0 be a trivial σ-field. Let ϕ(x) = (1−p

p )x.

Theorem 38 (4.8.9). (a) 0 < p < 1 =⇒ ϕ(Sn) is a martingale.

(b) Tx := inf{n : Sn = x}, x ∈ Z is a stopping time and P (Ta < Tb) = ϕ(b)−ϕ(0)
ϕ(b)−ϕ(a) for a < 0 < b.

(c) 1/2 < p < 1 and a < 0 < b =⇒ Tb <∞ a.s. and P (Ta <∞) < 1.
(d) 1/2 < p < 1 =⇒ ETb = b

2p−1 , b > 0.

Proof of (b). (b) Let Ta ∧ Tb be a stopping time. By law of iterated logarithm,

lim sup
n

Sn − n(p− q)
σ
√

2n log log n
= 1 a.s.

lim inf
n

Sn − n(p− q)
σ
√

2n log log n
= −1 a.s.

thus Sn ≈ n(p− q)± σ
√

2n log logn. If p > q, limn Sn =∞ a.s. and Tb <∞ a.s. Similarly Ta or Tb
is almost surely finite in any cases, so N <∞ a.s. If N ≥ n, a ≤ Sn∧N = Sn ≤ b. If N < n, Sn∧N =
SN = a or b. ϕ(Sn∧N ) is a bounded, thus uniformly integrable and closable martingale. Note that
SN = a1Ta<Tb + b1Ta>Tb . Also note that Eϕ(SN ) = 1 since 1 = Eϕ(S0) = Eϕ(Sn∧N )→ Eϕ(SN ).

1 = Eϕ(SN ) = ϕ(a)P (Ta < Tb) + ϕ(b)P (Ta > Tb)

= (ϕ(a)− ϕ(b))P (Ta < Tb) + ϕ(b).

Organizing both sides gives the result.
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Proof of (c). Observe that Tα < Tβ for all β < α < 0. Thus lima→−∞ Ta =∞.

P (Tb <∞) = lim
a→−∞

P (Tb < Ta)

= lim
a→−∞

(
1− ϕ(b)− 1

ϕ(b)− ϕ(a)

)
= lim
a→−∞

1− ϕ(a)

ϕ(b)− ϕ(a)
= 1.

Similarly, P (Ta <∞) = 1/ϕ(a) < 1.

Proof of (d). Observe that if a < 0, (infn Sn ≤ a) = (Ta <∞). Since

P (inf
n
Sn ≤ a) = P (Ta <∞) =


(

1−p
p

)−a
, a < 0

1 , a ≥ 0

we get

E| inf
n
Sn| =

∞∑
a=−∞

|a|P (inf
n
Sn = a)

=

∞∑
a=−∞

|a|

((
1− p
p

)−a
−
(

1− p
p

)−(a−1)
)

=

∞∑
a=−∞

|a|
(

1− p
p

)−a(
1− 1− p

p

)
<∞.

Thus infn Sn is integrable. Let Xn = Sn − n(p − q) then Xn is a martingale. Since Tb < ∞ a.s.,
Xn∧Tb is also a martingale.

ESn∧Tb = EXn∧Tb + (p− q)E(Tb ∧ n)

=�
��EX0 + (p− q)E(Tb ∧ n).

Note that infn Sn ≤ Sn∧Tb ≤ b and |Sn∧Tb | ≤ | infn Sn|+b for all n. By DCT, ESn∧Tb → ESTb =
b. By MCT, E(Tb ∧ n) ↑ ETb. Thus the desired result follows.

29


	Central Limit Theorem
	Infinitely Divisible Distributions

	Martingales
	Conditional Expectation
	Martingales
	Applications of Martingales
	Convergence in Lp, p>1
	Convergence in L1
	Square Integrable Martingales
	Optional Stopping Theorem


