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1 Central Limit Theorem

1.1 Infinitely Divisible Distributions

A certain kind of well behaving distributions has characteristic functions that can be represented in
canonical form. In this section we cover conditions that such distributions have and its canonical
representation.

1.1.1 Infinitely divisible distributions

Definition 1 (infinitely divisible distribution). Let F' be a distribution with characteristic function
. F is inifinitely divisible (ID for short) if one of the followings hold.

(i) There exists a squence of distributions (F,) such that F = F,, % ---* F,, for alln € N.

(ii) There exists random variables X, X, in a probability space (2, F, P) such that X 4 X1+ +
Xpn for all n, where X ~ F, Xy ~ F,, for all k and X,x’s are rowwise independent.

(iii) There exists a sequence of characteristic functions (¢n) such that ¢ = (on)™.

Here * denotes convolution. In fact all three conditions are equivalent. As an example, we can
easily check that a normal distribution X ~ N (g, 02) is infinitely divisible since X 4 Xp1++Xnn
for rowwise independent X, ~ N (£, %2)

First important property is that characteristic functions of ID distributions always have non-zero
values. For this, we need a lemma that applies to all characteristic functions.



Lemma 1. For a ch.f. p,
1—J(2t)]* < 4(1 = o))

Proof. Proof is simple using elementary trigonometrics. Notice that |¢|? is a real-valued ch.f. so it
suffices to show that Re(1 — ¢(2t)) < 4Re(1 — o(t)) for a given ¢.
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Theorem 1.
For an infinitly divisible ¢, ¢(t) # 0, Vt.

Proof. Proof is by induction. Since ¢ is ID, there exists ¢, such that ¢ = (¢,)". We know that
© — 1 ast — 0, so there exists a > 0 such that |¢(t)| > 0 for all |¢| < a.

Given t that |t| < a,

lon(t)] = lo(t)

[t|<a

> (inf |<p(t)|)i 1.

so for all 0 < e < 1, there exists N > 0 such that |¢,(t)] > 1 — € for all n > N. By the lemma, for
n > N and [t| < a,
1—[pn(2)]? <4(1 — (1 —€)?) < 8e.

Thus for large n, |9, (2t)]> > 1 — 8¢ > 0, for all 0 < e < 1/8. This gives p(2t) # 0 for all [t| < a.
Repeatedly apply the process to get ¢ # 0 for all t. O

1.1.2 Canonical representation

Characteristic functions of Infinitely divisible distributions can be uniquely represented in a certain
form. Furthermore, if a characteristic function can be written in such form, then it is infinitly di-
visible. We call it a canonical form. While there are several equivalent canonical representations,
I would like to cover the one by Kolmogorov. The first theorem is about sufficiency of ID distribution.



Sufficiency

Theorem 2 (Kolmogorov’s canonical representation i). Let ¢ be a characteristic function. If

it _ | _ iy
o) = [ )

oo x
for some finite measure p on (R, B(R)), then ¢ is infinitely divisible with mean 0 and variance p(R).

Proof. (case 1. p has a mass only at 0.)

t2o'2
Let 02 = u(R) = {0} > 0 then ¢(t) = e 2 which is the ch.f. of N(0,0?) so it is ID.
(case 2. p has a mass only at = # 0.)

Let p{z} = Az? for some A > 0. Then o(t) = M ~1=i2) which is a ch.f. of #(Z) — A) where

Z ~P(N). LetXnkHNdP( )for 1 <k <n.xz(Z,— ):mzkzl( X — 2) so it is ID.

(case 3. p has masses at xl, C L, Tg)
Let p{z;} = & > 0 and ¢;(t) = exp{ ", Mdul( )} where p;(R) = 6;. By case 2, p; is ID

with mean 0 and variance 6;. Thus for all 7 n, there exists ch.f:s ¢;, such that ¢, = (gojn)” It follows

n in
that ¢ = Hle Y = (H§=1 gajn) thus ¢ is ID. Let X ~ ¢ and X; P @; then X = LX) 4+ X,

so EX =0,Var(X) = p{z1, -, zx}

(case 4. general finite p.)

Let pp{j-27%} = p(j- 275, (j+ 1)27%], j € Jp = {0,£1,42,--- , 422k}, Then j; has masses on
{j-27%: j € Ji}. Since px(R) — u(R) >0 as k — oo, ux(R) > 0 for all large k.

Now assume that f: R — R is continuous and vanishes at infinity (i.e. lim|;|— o f(2) = 0). Let

; _{f(j'2’“) Lo e (j-27F (j+1)27
-

0 , otherwise

be a step function, then [ fdup = [ frdp. As k — oo, fr, — f. Since | fi] < |f] < sup, |f(z)] < oo,
apply BCT and we get [ frdp — [ fdp.

By the case 3, ¢(t) = exp{ [~ Mduk( )} is ID. since the integrand is continuous and
vanishes at infinity, <p;€ — @ as k — o0. Since p(0) = 1 and ¢ is continuous at 0, by continuity
theorem ¢ is a ch.f. for some random variable.

In addition, EX? < liminfy, EX,? < oo for X ~ ¢ and Xi ~ . By moment generating property
of ch.f., iEX = ¢/(0) = 0 and —Var(X) = —u(R). Let another ¢,,(¢) = exp{ [~ Md“( )}

then it is a ch.f. Observe that ¢ = (1,)™ so ¢ is ID. O

In other words,
o eitT _ 1 _ jtx
l%ﬂﬂ:/ T a).
oo x
We call the right hand side the canonical representation of ¢ and p the canonical measure. Note
that Hﬂ < t? so the integral is well-defined. For & = 0, we define em;# . —% by
continuity. Also note that

lett® — 1 — itz <2 2|t|

— 0 as |z| — oo.
a? Ja]

This follows from error estimation of the second-order Taylor series.



Necessity To show the necessity part for more general class of characteristic functions, we define
the condition R.

Definition 2 (condition R). A rowwise independent triangular array (X,i),", satisfies R if the
followings hold.

(i) EXnk—O 02, =FEX2 <oo,s2=%",02 >0.

(ii) sup,, s2 < oo.

(iii) maxi<g<r, 02, — 0 as n — oo.

For the proof of the next theorem, we need the following lemma.

Lemma 2. Let (u,) be a sequence of finite measures with sup,, p,(R) < oco. There exists a sub-

sequence (fny) and a finite measure p such that p,, — p and [ hdpn — [ hdp for all h that is
continuous and vanishes at infinity.

Theorem 3 (Kolmogorov’s canonical representation ii). Let F' be the limiting distribution of S, =
Xn1+ -+ X, for some (X,) that satisfies R. Then @, the ch.f. of F, has a unique canonical

representation:
oo et _ 1 — gty
o) = ean{ [ duta) .
oo T

Proof.

Tn Tn Tn

H i (t) — H ePnr(t)=1| < Z | oni(t) — efre 1]

k=1 k=1 k=1

The first inequality is from 3.4.3, the second is from 3.4.4, the third is from 3.3.19, and — 0 is by
condition R. In addition,

(i) > pasn— o

/m— )dE ()

/ i a2 dFi(z)

:/ﬁ (Zank )

Let pp(—o0, 7] = Z;n:l foo y>dFi(y), then

. et — 1 —jtx
(i) = / Tdun(m‘)

also by condition R.



and p,(R) = s2. So sup,, iy (R) < oo and there exists (p,;), 4 such that p,; = p and [ hdp,; —
J hdp for all h that is continuous and vanishes at infinity. By the above mentioned fact,

et — 1 —jtx et — 1 —jtx
[ o) [ duta),

By convergence of (i) and (ii), the existence part of the proof is done.
For the uniqueness part, we only need to show that such p is unique. Suppose

et 1 —jtx et — 1 —jtx
/72@(@ :/72@(:5), v,

T T

This implies [ e®*du(z) = [€*®dy(z). Put t = 0 to both sides and we get ¢ := u(R) = v(R).
Dividing both sides with ¢, u/c and v/c becomes probabilty measures with identical ch.f.s and the
proof is done. O



2 Martingales

2.1 Conditional Expectation

In this chapter we study convergence of a sequence of random variables with dependency. To be
specific, I will cover theory of martingales. The first subsection is about conditional expectation
which is essential for defining martingales.

2.1.1 Definition

Definition 3 (conditional expectation). Let (Q, F, P) be a probability space, Fo C F be a sub o-
algebra. For a random variable X € Fy, E|X| < oo, we say Y a version of E(X|F,;), conditional
expectation of X given F, if (i)Y € F and (ii) [, XdP = [, YdP for all A € F.

The term “versions” means they are almost surely equivalent. So in the following sections, I will
just call such Y a conditional expectation instead of a version.

Non-negative random variables We need to know the existence of such Y and if it is unique (in
almost sure sense) if exists at all. For a non-negative X it can be constructed as the Radon-Nikodym
derivative.

Definition 4 (absolute continuity). For measures u,v on a measurable space (2, F), we say v is
absolutely continuous to p and write v << p if p(A) =0 implies v(A) for all A € F.

Theorem 4 (Radon-Nikodym). Let (2, F) be a measurable space and u,v be o-finite measures. If

v L p, then there exists f = g—: € F such that f > 0 almost everywhere and v(A) = fA fdu for all

AeF. f= Z—Z is called the Radon-Nikodym derivative of v with respect to p.

Let Q(A) = [, XdP for all A € FO then Q is a o-finite measure such that @ < P. Thus by
Radon-Nikodym theorem, there exists % € Fo such that [, XdP = [, %dP for all A € Fy. By
definition % satisfies conditions for being a conditional expectation of X given F.

Notice that for a non-negative random variable, conditional expectation exists even for random

variables that are not integrable.

General case For a general X, let Y, Y~ be conditional expectations of X, X~ respectively.
Let E(X|Fo) =Y — Y, then clearly Y € Fy) and for given A € Fy,

/XdP:/X"’dP—/X_dP
A A A
:/Y"‘dP—/Y_dP:/YdP.
A A A

Uniqueness Suppose Y, Y’ are E(X|F0) Then [,(Y —Y")dP =0 for all A € F;. Let A; =
Y —-Y'>0and 4y =



Y -Y' <0, Ay, Ay € Fo.

/ (Y—Y’)dPZO =— Y —-Y' =0on 4;.
Ay
/ (Y—Y’)dPZO = Y —-Y' =0on A4,.
Az

Thus Y = Y’ almost surely.
Not only we get Y = Y’ a.s. but we can also be sure that for any X3, Xy € F that satisfy
[4 X1dP = [, XodP for all A € F, it always follows X; = X; a.s.

2.1.2 Examples and insight

Think of Fy C F as the information we have at our disposal. For A € Fy, we can interpret it as an
event that we know whether A occurred or not. In this sense, E(X|Fy) is our best guess of X given
the information we have.

Theorem 5 (best guess). Let X be a random variable such that EX? < oo. Let C = {Y €
Fo: EY? < oo} C L?. Then

_ 2 _ 2
E[X - E(X|F)]" = inf B(X ~Y)".
The proof requires a property yet to be mentioned, so I will leave it until the end of the section.

The following examples will help getting a grasp of the intuition behind conditional expectations.
Proofs are clear so I will not mention it.

Proposition 1 (perfect information).
X eFy = EX|Fo)=X as.
Proposition 2 (no information).
X L Fy = E(X|F) = EX as.
Here X L Fy means
P(XeB)NA)=P(X € B)P(A), VB € B(R), A € Fo.
As an extension of undergraduate definition, we can define conditional probability.

Proposition 3 (conditional probability). (i) For (2, F, P), suppose @ = U2,Q;, where §;’s are
disjoint and P(€;) > 0 for alli. Let Fo = o(Q1,Qa,- ), then

< [ XdP
E(X|Fo) =) fﬂlg(mmi.

i=1 v
i.€. XdP
E(X|Fy) = % on Q;.
(it)

P(A'.Fo) = E(].A‘]:o).

P(AN B)

PAIB) = =5



(ii) follows naturally from (i).
In undergraduate statistics, instead of giving o-field, we gave random variables. This can be
regarded as a special case of our definition.

Definition 5 (conditional expectation given random variable).
E(Y|X):= E(Y|o(X)).
Furthermore, we get some form of “conditional density”ﬂ

Proposition 4 (conditional density). (i) Suppose X, Y have a joint density f(x,y). i.e. P(X,Y) €
= [ f(x,y)dady for all B € B(R?). If E|g(X)| < oo, then

E(g(X)|Y) = h(Y), where h(y) / f(,y)de = / o) f (. y)de.

(ii)) X LY, ¢ :R? = R is a Borel function such that E|p(X,Y)| < oo, then
E(p(X,Y)|X) = h(X), where h(z) = Ep(z,Y).
Proof. (i) Since f,g are Borel, h is also a Borel function. Let (X,Y) be a random vector on a

product space (92, F, P) of (Qx,Fx, Px) and (Qy, Fy, Py). Given A € o(Y), let B € B(R) so that
A=Y"1(B).

/Ag(X)dP:/g(X)lAdP
~ [0

// Y)dPxdPy
= [ [ otanBm)s.ydsdy
/ / F(, y)dady
= [ ) [ sa.ydzay
- /A h(Y)dP

The third and the fifth equality is from the Fubini’s theorem.
(ii) By the Fubini’s theorem, h € o(X). Given 4 € o(X), let B € B(R) so that A = X ~!(B). Similar
to (i), we get

[ nxars = [ [ o(x.viapascoars
— [exVtacnar

= / (P(Xv Y)dPX
A

The second equality is from the Fubini’s theorem. O

IThere is a formal notion of (regular) conditional distribution. The actual conditional distribution is a function
defined on a product space of B(R) and Q.



2.1.3 Properties

Next I would like to cover fundamental properties of conditional expectations. These will be used
throughout this chapter.

Proposition 5. Suppose E|X| < oo, E|Y| < o0.

(i) E(aX + bY |Fo) = aE(X|Fo) + bE(Y|Fo).
(i) X >0 a.s. = E(X|Fy) >0 a.s.

Notable result from (ii) is that |E(X|Fo)| < E(|X||Fo)-

Inequalities These are conditional version of some of the inequalities that we covered earlier in
chapter 1.

Theorem 6 (Markov). Suppose E|X| < oo, X > 0.
1

Proof.
1

X
P(X Z a|f0) S E(].XZGE‘FO) § aE(XLFO)

Similarly, Chebyshev’s inequality also holds for conditional expectation.

Theorem 7 (Jensen). E|X| < o0, ¢ : R = R is convez, E|o(X)| < oco. Then E(p(X)|Fo) >
P(E(X|F0))-

Proof. Note that ¢(x) = sup{ax +b : (a,b) € S} where S = {(a,b) : ax +b < ¢(x),Vz}. So
p(X) > aX 40 for all (a,b) € S.

E(o(X)|Fo) > aE(X|Fo) + b, Y(a,b) € S.

>
E(o(X)|Fo) > sup{aE(X|F0) +b: (a,b) €S}
= ¢(E(X|F0))-

Convergence theorems

Theorem 8 (MCT). If X,, >0 a.s. and X, T X a.s. with E|X| < 0o, then E(X,|Fo) T E(X|Fo)

a.s.

In fact, the condition F|X| < oo is not required since we can always define conditional expectation
for non-negative random variables as the Radon-Nikodym derivative. I wrote the condition only
because Durrett did so.



Proof. Note that E(X,|Fo) < E(Xp+1|Fo) < E(X|Fp) for all n. Given A € Fy, by using MCT
twice,

/limE(Xn|]-'o)dP=lim/ E(X,|Fo)dP
AT n A

O

Theorem 9 (DCT). X,, — X a.s. and |X,| <Y for all n where EY < co. Then E(X,|Fo) —
E(X|Fo) a.s.

The proof is similar to that of conditional MCT.
Theorem 10 (Fatou). X >0 a.s., Then E(liminf, X, |Fy) < liminf, E(X,|F).

Proof. Given M > 0, X, A M is dominated by M. There exists a subsequence (X, ) such that
Xy, — liminf, X,,. By conditional DCT,

E(liminf X,, A M|F) = lilgn E(X,, N M|Fo)
< liminf E(X,|F), VM > 0.
By conditional MCT, letting M 1 oo gives the result. O
The obvious consequences are
B, C Byy1 1B, B=U2 B, = P(B,|Fo) 1 P(B|Fy).

and

Cp € Fy are disjoint = P(US2,C,|Fy) = Z P(Cy|Fo).-
n=1

Smoothing property
Theorem 11 (smoothing property). (i) X € Fy, E|Y| < o0, E|XY| < oco. Then E(XY|F;) =

XE(Y|Fo).
(i5) F1 C Fa are sub o-fields. E|X| < co. Then

E[E(X|F1)|F2] = E(X|F1)
and E[E(X|F2)|F1] = E(X|F1).
(i) is clear by using the standard machine. (ii) is also clear by the definition of (nested) conditional

expectations.
Finishing the section, let me prove the second theorem of this section.

10



Proof of the best guess.

E(X -Y)*=E[X - BE(X|FR) + BE(X|F) - Y]?
= BE[X — E(X|Fo))* + E[E(X|Fo) — Y]?

+2E[(E(X|Fy) - Y = E(X|F0))[Fo)]

The canceled term in the second equality is by the smoothing property. Thus E(X|Fy) = argminy ., E(X—
Y)2. O

2.2 Martingales

Remaining sections in chapter 4 is about martingales and convergence of it. Regarding martingales,
our first topic will be convergence in almost sure sense. Next we will look into convergence in L?,
with p > 1 and p = 1 separately. In the meantime the theory of optional stopping will be covered.

2.2.1 Martingales

Definition 6 (martingale). Let (F,)52 be a sequence of sub o-fields of F, (X,) be a sequence of
random variables with X,, € F,,, E|X,| < oo for alln. (X,,, F,) is a martingale if E(X,+1|Fn) = Xn
a.s., a submartingale if E(Xp41|Fn) > X a.s., or a supermartingale if E(Xp41|Fn) < Xy a.s.

We say X, is adapted to F, if X,, € F,, for all n. For simplicity instead of denoting F,, to-
gether, we could just say X,, is a (sub/super)martingale if the adapted o-fields are clear. If X, is
a martingale, [, X,,41dP = [, X,,dP for all A € Fn, so trivially EX,,;; = EX,, for all n. X,, is a
martingale if and only if X,, is both a submartingale and a supermartingale. In addition, if X, is a
submartingale, then — X, is a supermartingale.

The easiest but important examples are random walks and square martingales.

Example 1. Suppose &1,&z, -+ are i.d.d. with mean 0 and variance 0. Let F,, = o (&1, ,&n).
Then

(i) Xn =& + - &, is a martingale.

(ii) X, = (&1 + - + &,)? — no? is a martingale.

Though we cannot guarantee that functions of martingales are also martingales, we can say for
sure that a function of martingale is a submartingale if the function is convex.

Theorem 12 (4.2.6). For a martingale X, if ¢ is convex and E|p(X,)| < oo for all n, then (X))
18 a submartingale.

The proof is direct by conditional Jensen’s inequality. The obvious corollary is for submartingales.

Corollary 1 (4.2.7). For a submartingale X,,, if ¢ is convez, increasing and E|p(X,,)| < oo for all
n, then o(X,) is a submartingale.

The following two examples will be useful in the section comes later.

Example 2. (i) If X,, is a submartingale, then (X,, —a)™ is a submartingale.
(i) If X,, is a supermartingale, then X, A a is a supermartingale.

11



2.2.2 Martingale convergence theorems

For martingale convergence theorems, we need to define and prove predictable sequences, stopping
times, upcrossing inequality and related properties.

Upcrossing inequality

Definition 7 (filtration). Let F,, be a sequence of sub o-fields of F. F, is a filtration if F,, C Fpi1
for all n.

Definition 8 (predictable sequence). For a filtration (Fp)n>0, a sequence of random variables Hy,
is predictable if Hy11 € Fn for alln > 0.

Intuitively, consider n as time index. The term “predictable” is from the fact that we knows
every information about the behavior of H, 11 in the time point n.

We get the result that the sum of submartingale increments weighted by a bounded predictable
sequence is also a submartingale.

Theorem 13 (4.2.8). Let X, be a submartingale adapted to a filtration (Fp)n>0. Let Hy, be a
non-negative predictable sequence with |H,| < M,, for some M, > 0 for all n. Then

(H-X), = zn: Hp (X — Xm—1)

18 a submartingale.

Proof. (i) E|(H - X),| <Y 0 i MpE(|X| + | Xm_1]) < oo for all n.
(ii) Clearly, (H - X),, € F,, for all n.
(i)
E((H - X)ns1|Fn) = (H - X)n + E(Hps1 (Xng1 — Xn)[Fn)

= (H - X)o + Hypr { EQCr sy = X}

O

We already get a glimpse of stopping times while studying coupon collector’s problem and renewal
theory. They were random variables that specifies the time that an event occurs. Here, we define it
formally.

Definition 9 (stopping time). Let N be a random variable taking values 0,1, --- ,00. N is a stopping
time if {N =n} € F, for alln=20,1,--- ,00.

It is highly useful to define a predictable sequence as an indicator function related to stopping
times. With such sequence, we can easily derive the following theorem.

Theorem 14 (4.2.9). Let N be a stopping time, X, be a submartingale. Then X,an is a sub-
martingale.

Proof. Let Hp, = 1,,<n then it is a non-negative bounded predictable sequence since {m < N} =
{N < m —1}° € F_1. By theorem 4.2.8 X, oy — Xo is a submartingale, so X,y is also a
submartingale. O

12
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As an example and a lemma for our main theorem - martingale convergence - I will state and
prove the upcrossing inequality.

Theorem 15 (upcrossing inequality). Let (X, Fn)n>0 be a submartingale. For a < b, define
Noj—1 :=inf{m > Nap_2: X, <a},
Nop :=inf{m > Nox_1 : X, > b},
Ny :=—1,
U, =sup{k: Nox <n}.

For a submartingale (X,,)n>0,

(b—a)EU, < E(X,—a)" —E(Xo—a)".
Proof. First we show that N,,’s are stopping times. For given n,

{Ni=n}={Xg>a, -, X1 >0a,X, <a} € F,.

n—1

{Ni=n}=J{N =06Xe31<b,-+ , Xp1 <b,X, > b} € F,.
(=1

Thus N,,’s are stopping times. Next, we define Y;, = a+ (X,, —a)* so that Yy,, > band Yy,, , =a
for all k. Since x — a + (x — a)™ is increasing and convex, Y, is also a submartingale.

S

(b_ a’)EU (YNZk YNQk—l)
1

= ZW: > (Yi-Yi),

k=1i€eJy
where Jy = {Nag—1 + 1, -, Nox}

- Z (Ym - m—1)7

meJ
— 1 }Un
where J = U, Jj,

n
< Z 1mEJ(Ym - Ym—1)~
m=1

b
Il

Let H,, = 1,,¢, then since
{m € J} = {Nap_1 < m < Ny for some k}
H,, is a bounded, non-negative predictable sequence. Thus
b—a)U, <(H-Y),

and the right hand side is a submartingale. Let K,, = 1 — H,, then similarly (K -Y), is a
submartingale and E(K -Y),, > 0. Hence

E(Yn_%):E(H Y) +E(Ky)n
> E(H Y)n > (b— a)EU,.

13



We call U,, the number of upcrossings. An important fact directly follows from the theorem is

EU, < bia (EX;F + |a|). This will be the key to prove the martingale convergence.

Martingale convergence theorems We get our first convergence theorem for dependent se-
quence.

Theorem 16 (submartingale convergence). For a submartingale X,, if sup,, X,5 < oo, then there
exists X € L' such that X,, = X a.s.

Proof. Given a < b, let Uy,[a,b] be the number of upcrossings of X, -+, X, over [a,b]. By the
upcrossing inequality, EU,[a, b] < w Let Ula,b] = lim,, Up[a, b] then

EXYF +|al
—_— <
—a

EUla,b] = lim EU,[a, b] < sup

Thus by Markov’s inequality, 0 < Ula, b] < oo a.s.
Now suppose liminf,, X,, < limsup,, X,,. Then for some a < b, X,, < @ and X,, > b infinitely often.
Thus

P(liminf X,, < limsup X,,) = P(liminf X,, < a < b < limsup X,, for some a,b € Q)

a,beQ

=Y P(Ula,b] = 00) =0

a,beQ

< Z P(liminf X,, < a < b < limsup X,,)

so there exists X such that X,, — X a.s. We now need to show that such X is integrable. By

Fatou’s lemma,
EXT <liminf EX;" <sup EX,| < oc.
n n

EX~ < 1imninf EX, = limninf E(X,; - X,)
<sup EX;" — EX{ < oo.
O
As a corollary, we get supermartingale convergence and closability of negative submartingales.

Corollary 2 (supermartingale convergence). Let X,, > 0 be a supermartingale. There exists X € L*
such that X,, > X a.s. and EX,, < EXj.

Corollary 3 (closability). If X,,,n =1,2,--- is a negative submartingale, then X,,,n =1,2,-+- 00
s also a negative submartingale.

The next example show that even if a martingale converges almost surely, we cannot guarantee
LP convergence. The following sections will be about in which condition does a martingale converges
in LP.

Example 3. Let &,--- be i.i.d. with P(§, =1)=P(& =-1) = % Let Sp, =&+ +&, So=1
and Fp, = (&1, ,&n), Fo = {¢,Q} then S, is a martingale. Let N = inf{n >1: S, =0} be a
stopping time, then X, := Span > 0 is also a martingale. X, — 0 a.s. but X,, — 1 in L'
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Proof. By supermartingale convergence, X,, — X for some X € L!'. Note that on (N = o0),
X, = Sp. By the law of iterated logarithm, P(liminf, S, = —oo,limsup,, S,, = c0) = 1. It follows
that
P(N = o0) = P(N = o0, liminf S,, = —oo,limsup S,, = o0)
n

n

P(N = oo, liminf X,, = —o0,limsup X,, = o0)

< P(liminf X,, = —o0,limsup X,, = o0) = 0.

n

and N < oo a.s. Hence X = lim,, S,any = Sy =0 a.s.
However, E|X,,| = ES,any = ESg =1 for all n since X, is a martingale. O

2.3 Applications of Martingales

For applications of martingales, I would like to cover the case of martingales with bounded increments
and the branching process.

2.3.1 Martingales with bounded increments

Before getting to the topic, I would like to state a very useful theorem when constructing a
(sub)martingale.

Theorem 17 (Doob’s decomposition). Let (X,) be a submartingale. There uniquely exists (M)
and (Ay) where the former is a martingale and the latter is an increasing predictable sequence with
Ao =0.

The uniqueness in the statement is in almost sure sense.

Proof. Let A, = Apy1+(E(Xn|Fn-1)—Xn—1, Ao = 0. It is clear that A,, is an increasing predictable
sequence. Let M, = X,, — A,, accordingly, then it is a martingale.
Now suppose X, = M,, + A, = M), + A!,. Then M,, — M) = A}, — A, € F,_1 and

M, — M,
= E(M, — M}|F,—1)
= My_1 — M, _;.
Thus M,, — M) = Aj — Ap = 0 for all n and the uniqueness follows. O

The theorem insists that every submartingales can be decomposed into an increasing sequence
and a martingale. The important part is where we constructed A,,. Since 4¢ = 0,

[
M=

An (E(Xm|]:mfl) - mel)

3
ﬂ.

I
M=

E(Xm - Xm—1|fm—1)~

3
ﬂ‘

This gives us a form of conditional increment. In quite a lot of situations constructing a sequence
like this leads to a (sub)martingale with bounded increments.

The main theorem of this subsection is a dichotomy that applies to martingales with bounded
increments.
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Theorem 18 (4.3.1). Let (X,) be a martingale with | X,,11 — X,,| < M < oo for all n. Let

C = {X,, converges},

D = {liminf X,, = —o0, limsup X,, = co}.

Then P(CUD) = 1.

Proof. Without loss of generality, let Xo = 0. For k > 0, let N, = inf{n : X,, < —k} be a stopping
time so that X,,An, also be a martingale. If N = oo, Xyan, = X, > —k for all n. If N < oo,
XNk S —k and Xt > —k fort = 1,27"- ,Nk - 1, thus XNk = XNk,1 + ()(1\[,C —XNkfl) 2 —k — M.
Since X, an, +k-+m is a non-negative martingale, by supermartingale convergence X, n, converges
a.s.

This implies X,, converges on {N; = oco}. Since liminf, X, > —oo implies X,, > —k’ for all but
finite n’s, for some k' and so Np/.1 = 0o, we get

{liminf X,, > —c0} C U{Nk = 00}.
n 1
Apply the same to (—X,,) and we get
oo
{limsup X,, < o0} C U {Nj; = o0}.
" k=1
Hence D¢ C C and it follows that P(C' U D) = 1. O
As a corollary we get an extension of the second Borel-Cantelli lemma for dependent sequence.

Corollary 4 (the second B-C lemma (2)). Let (Fy,)n>0 be a filtration with Fo = {¢,Q}. Suppose
A € Fp, for alln > 1. Then

{An i} ={D)_ P(An|Fn1) = oo},

Proof. Let X,, = Y. _(1a,, — P(Ap|Fm-1)), Xo = 0. Then it is easy to check that X,, is a
martingale with bounded increment.By the dichotomy, we get C' or D almost surely.

On C| in order to make X,, convergent,

ZlA" =00 < ZP(An|.7:n_1) = o0.

On D,
ZlAn > limsup X,, = oo,
3" P(Ay|Furs) > limsup(—X,) = oc.
Thus in any case, the desired result follows. 0

Notice that X, in the proof is in the form of A,, from Doob’s decomposition.
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2.3.2 Braching process

Definition 10 (branching process). Let £ be i.i.d. non-negative integer-valued random variables.
Let

n+1 n+1
+ 4 & Zp >0
Zo=1, Znsy1 =3 " Zn 7
0 i {0 . Zn=0

and Fp, =0(&™:1> 0,1 <m <n). (Z,) is called a branching process.

Think of £ as the number of offsprings that nth individual produce in ith generation. Z,
naturally be the total number of offsprings in nth generation. By construction, Z,,’s are independent.
Lemma 3 (4.3.10). Let p = E€P, then (=, F,) is a martingale.

,“'n )

Proof. Tt is clear that Z,,/u™ € F,, and is integrable for all n.

E(Z7z+1|F7z) == E(Zn+1 Z 1Zn:k|fn)
k=0

E(Z7L+11Zn=k ‘Fn)
k

B &M g, -kl Fn)

0 =1

o0
= Z 1z, =kkp
k=0

= Z ]-Zn:k:Zn,u = anj“
k=0

e T4

>
Il

O

Using this, we can confirm our naturale guess that the population will be extinct if the average
number of offsprings per individual is below 1.

Theorem 19 (4.3.11). If 4 < 1 then Z, =0 a.s. for all but finite n’s.

Proof. P(Z, > 0) = Elz,~0 < EZ,1z,~0 = EZ,. By the lemma, E(%) = E(%) = 1 thus
EZ, = ™.

iP(Zn >0) < i,u" < 00.
n=1

n=1

By the first Borel-Cantelli lemma, P(Z,, = 0 eventually) = 1. O

2.4 Convergence in L7, p > 1

In this section we look into the condition that makes a martingale converges in L”, p > 1 in detail.
We start by proving Doob’s inequality. By using this result we prove martingale inequalities which
will then be used to prove Doob’s LP maximal inequality. LP convergence is direct from them. Lastly,
as an extension of Doob’s inequality, I will brief a version of optional stopping.
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2.4.1 Martingale inequalities

Theorem 20 (Doob’s inequality). Let X,, be a submartingale, N be a stopping time such that N < k
a.s. Then
EXy < EXy < EX}.

Proof. (i) Observe that X, An is also a submartingale. Thus EXoan < EXpan and we get the first
inequality.

(ii) Let K, = 1ny<n—1 be a non-negative bounded predictable sequence then (KX)n =X, — XuAN
is a submatringale. Thus 0 = F(K - X )¢ < E(K - X); which leads to the second inequality. O

This natural result will be the foundation of numerous theorems that will be introduced from
now on. For simplicity, I will call stopping times with almost sure upper bound bounded stopping
times.

Theorem 21 (submartingale inequality). Let X,, be a submartingale. Define X,, = mMaxo<m<n Xm-
For A > 0, ~
AP(Xp > A) S EX,lg s

Proof. Let A = {X,, > A}. Let N = inf{m : X,, > A} A n be a bounded stopping time. Since
My < Xnly, )\P(A) < EXnlyu.

On A, EXy < EX,, by Doob’s inequality. On A, N = n a.s. Thus in either case FEXny14 < EX;14
and we get the result. O

A more comprehensive form might be

1

P(X,>\N<
(Xn 20 < 5

EX'”«]‘XHEAV

which can be viewed as a version of inequality that resembles Chebyshev’s inequality.
Similarly, we can also derive supermartingale inequality.

Theorem 22 (supermartingale inequality). Let X,, be a supermartingale. For X\ > 0,
AP(X, >\) < EXo— EX,1%, ).
Proof. Let A and N as in the proof of submartingale inequality. The result is direct from

EXy> EXNy =FEXN1a+ EXN]4e.

2.4.2 LP convergence theorem

With the help of submartingale inequality, we get the following theorem.

Theorem 23 (Doob’s maximal inequality). Let X,, be a non-negative submartingale. For 1 < p <
OO’
— p P
EX? < () X,
p—1

18



Proof. Let M > 0. By properly using Foubini’s theorem
E(X, ANM)? = / P((X,, AN M)P > t)dt
0
_ / P(Xn A M > \)pAP~1d)
0
M —
_ / P(X, > \pAP~LdA
0
M
S / XEX7L1XHZ)\pAp71d)\
0

M
:/ /an)gn»de)\p”d)\
0 Q -

. ]%EXn(Xn A M)P~
< L (BXD)V(B(X, A M)
-

The first inequality is follows submartingale inequality and the second one is from Holder’s inequality.
Transposition and applying MCT (M 1 co) leads to the result. O

It is often called LP mazimal inequality. Note that we used X,, A M in order to prove that the
inequality holds even if FX,, is not finite. LP convergence of a martingale is derived from this.

Theorem 24 (LP convergence). Let X,, be a martingale with sup,, E|X,|P < co. For p > 1, there
exists X such that X,, — X a.s. and in LP.

Proof. By submartingale convergence, there exists X € L' such that X,, — X a.s. By MCT and L?
maximal inequality,
Esup|X,|? =limE max |X,,|?
n n 0<m<n

P p
< lim () E|Xn|p
n p 1

» \?
< () sup B| X, |P < oo.
p—1 n
Thus |X,, — X|P < (2sup,, | X,|P) is integrable and by DCT, the result follows. O

2.4.3 Bounded optional stopping

As a sidenote, I would like to cover the fact that bounded stopping times preserve submartingale
properties.

Definition 11. For a stopping time T,
Fri={AeF:ANn(r =n) € F,,Vn}
It is not difficult to check that F. is a sigma-field with 7 € F;.

Theorem 25 (bounded optional stopping). Let X,, be a submartingale, o, 7 be stopping times that
0<o<7<kas Then E(X.|F,) > X, a.s.
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The proof can be done in two different ways. The first proof uses Doob’s inequality.

Proof. Since Y- is a submartingale, by Doob’s inequality FY, < EY;. For given A € F,, let

N — {O’ on A
T on A°
Then N is a stopping time since
(N=n)=((c=n)nA)U((r=n)N(c <n)NA°) € F,.

Hence
EYy = EY,14+ EY;15 < EY..

/YadPg/YTdP:/E(YTLFg)dP
A A A

The second approach uses the lemma and inductive process:

Lemma 4.
E(X | Fo)lo=n = BE(X;|Fn)lo=n a.s.

Proof. We first show that the right hand side is F,-measurable. Given a € R and k£ > 0,
(B(X:|Fa)lo=n < a)N (0 = k)

J(EX|Fn)<a)N(c=k)eFr , k=n
Cl(0<a)n(o=k) e Fi , otherwise

Next for given A € F,

/ BE(X+|Fs)loendP
A

- / E(X.|F,)dP
AN(o=n)

- / X.dP
AN(o=n)

=/ E(X.|F,)dP

AN(o=n)

. / E(X+|F)LoendP.
A

Proof of bounded optional stopping. it sufficies to show that for all A € F,

/ E(X |5y LoendP > E(X,|Fn)lon.
A
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Given A € F,,,
/ E(X | Fo)loendP — E(X | Fn)lo=p
A

_ / E(X,|Fy) — XpdP
ANn(o=n)

= / X, —X,dP
AN(o=n)

_ / X, — X,dP
AN(oc=n)N(T>n+1)

> / X, — X,y dP
AN(o=n)N(T>n+1)

- X, — Xpi1dP

AN(e=n)N(T>n+2)

v

/ X — XpdP =0.
AN(o=n)N(t=k)

2.5 Convergence in L!

In the previous section, we covered the condition where martingales converges in LP. We only covered
the case where p > 1. In this section, the notions of uniform integrability is introduced to compensate
convergence in p = 1 case.

2.5.1 Uniform integrability

If a random variable X is integrable, [ _||X| > a|| X||dP < € for all € > 0 for large a and vice versa.
Intuitively, in order for a random variable to be integrable, integration of its tail part should be
bounded for any small e. Uniform integrability is defined accordingly.

Definition 12 (uniform integrability). (X;):er is uniformly integrable if lim, sup,cp fl | X;|dP =

X¢|>a
0.

If X; < X for all t € T where X is integrable, (X;) is uniformly integrable. If (X3),(Y;) are
uniformly integrable, then (X; + Y;) is uniformly integrable since for given a > 0

/ X, + Vi|dP
| X¢+Ye|>a

<

/ X, + Y|P
[ Xt [+|Ye|>a,| Xt | >|Yi

+ / X| + |Vi|dP
[Xe|+|Ye|>a,| Xt | <|Y:]

g/ 2|Xt|dP+/ 2/Y;|dP.
2|X¢|>a 2|Yi|>a

The next theorem which sometimes is referred to as Vitali’s lemma is about necessary and
sufficient condition for uniform integrability.
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Theorem 26. (X;);cr is uniformly integrable if and only if the followings hold.
(1) sup,er E| X:| < o0.
(ii) Ye > 0,36 > 0 such that sup,cp [, | X¢|dP < € for all A € F where P(A) < 0.

Proof. (=) (i) is clear. Given A € F, a > 0,

/ | X¢|dP
A

_ / IX,|dP + / IX,|dP
AN{|X¢|>a} An{|X¢|<a}

< / | X¢|dP + aP(A)
|X¢|>a

Thus sup, [, |X¢|dP < €/2 + aé.

(<) Let M = sup, E|X¢| < oo, ap = M/é. Since P(|X:| > ag) < E|Xi|/ag < M/ay = 6,

sup, |, | X¢|dP < e.
tJ|X¢|>ao

O

We state our main theorem of this subsection.

Theorem 27 (Vitali). Suppose X,, — X, X,, € LP, p > 1. The followings are equivalent.
(i) (| Xn|P) is uniformly integrable.

(i) X, = X in LP.

(ii1) E| X, [P = E|X|P < co.

Proof. (()=(ii)) By Fatou’s lemma, E|X|P < co. |X,, — X|P < 2P(|X,,|? 4+ | X|P) makes |X,, — X|?
uniformly integrable. By the theorem, given ¢ > 0 there exists § > 0 such that sup,cp fA | X¢|dP < e
for all A € F where P(A) < 4. There exists N such that for all n > N, P(|X,, — X|? > ¢€) < 4. Thus

E|Xn — X|p = E|Xn — X|p1‘Xn_X‘p2€ + E|Xn — _Xv|p].|)('n_x‘p<6 S 26.
((it)=(iii)) Trivial by || Xnll, — [| X5 < 1 X0 = X|lp-
((iii)=-(i)) Given a € R such that P(|X|? =a) = 0.
claim: |X,[P1x, |r<q = | X[P1|x|p<a-
For all § > 0,
P(1ix,jr<a = Lixjr<al > €)
< P(|XnP <a,|X|P>a)+ P(|X,P > a,|X|P <a)
< P(|XnlP <a,|XIP>a+9)+ P(|Xn|P >a,a—0 < |X|P <a)
+ P(|X,n|P > a,|XIP <a—906)+ P(|X,n]P >a,a—6 <|X|P <a)
S2P(|Xn|P — | XP| > 8) + Pla< |X|P<a+d)+ Pla—§d < |X|P <a)

Thus as § — 0,
1imSHpP(|1|Xn‘pSa - 1‘X‘p§a| >e€) <04 P(|X|P=a)=0.

By the claim and since | X, |P1|x,, |p<q is bounded by a, (| X,|P1)x,|»<4) is uniformly integrable. By
(i)=(ii)=(iii), E|X,|[P1|x, p<a — E|X[P1|x|p<q. In addition, by the assumption E|X,[P1x, p>q —
E|X|P1|x|p>q- For a given € > 0, there exists ag > 0 such that E|X[P1x|p>qe, < €/2 and P(|X [P =
ag) = 0. Pick N such that ‘E|Xn|p1|Xn‘p>aO — EIle].‘X|p>a0‘ < €/2 for all n < N. Then for n > N,
E|Xn|P1ix, p>a, < € For n < N, there exists a; such that max,«n E|X,[P1x, |p>a, <€ O
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2.5.2 L' convergence of martingales

With uniform integrability we get L'-convergence of martingales. First we define regular and closable
martingale for simplicity of the statement.

Definition 13. A martingale (X,,) is regular if there exists a random variable X € L' such that
X, = E(X|F,) a.s. (X,,) is closable if there exists a random variable X, € L* such that X, — Xoo
a.s. and E(Xo|Fn) = Xy a.s. for all n.

If X, is closable, then it is clearly a regular martingale.

Theorem 28 (4.6.7). Let X,, be a martingale. The followings are equivalent.
(i) X, is regular.

(i) X, is uniformly integrable.

(iii) X,, converges a.s. and in L'

(iv) X, is closable.

Proof. ((i)=>(ii)) There exists X € L' such that X,, = E(X|F,) a.s.

R AT |X]|dP.
|X'n‘2a Ianza E(‘XH]‘_”)ZG

Since X is integrable, for a given € > 0 there exists § > 0 such that fA | X |dP < e for all A such that
P(A) < 6 and there exists a > 0 such that P(E(|X||F,) > a) < 1E|X| < 4.

((ii)=(iii)) Uniform integrability implies sup,, |X,,| < oo so by submartingale convergence we get
convergence in probability. By Vitali’s lemma, we get the result.

((iii)=-(iv)) There exists X € L' such that E|X,, — X| — 0 as n — oo. Then E|X,| — E|X| and
sup,, E|X,| < oco. By submartingale inequality, there exists X, € L! such that X,, — X, a.s.
Notice that X = X, a.s. Let m > n then

= ElE(Xml}-n) - E(Xml}—n”
S EE(|Xoo — Xoml|Fn)l
= E|X00 me\ — 0

as m — oco. Hence E(X|Fn) = X, a.s.
((iv)=(1)) Trivial. O

Consider a sequence of conditional expectations E(X ||F,,) with fixed X. By using the theorem
from previous subsection we can determine convergence of this sequence as well.

2.5.3 Levy’s theorem

Theorem 29 (Levy’s theorem). Let X be an integrable random variable and (F,) be a filtration.
then E(X|F,) = E(X|Foo) a.s. where Foo = 0 (UpFp) .

Proof. Let X,, = E(X|F,,) then X,, is a closable, thus regular, martingale and there exists X, such
that X,, = X a.s. It suffices to show that Xo, = E(X|Fo) a.s. We show this with 7~ theorem.
Let L={A: [, XedP = [, XdP} be a A-system. Then U, Fn C £ and U,F, is a 7-system. By
-\ theorem Fop C L thus Xoo = F(X|Fso) a.s. O
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Similar result holds for a sequence (X,,) uniformly dominated by an integrable random variable.
Theorem 30. Suppose X, — X a.s., | X,| < Z,¥n, E|Z| < 0o then E(X,|Fn) = E(X|Fx) a.s.

Proof. Let W, = supy >, |Xx — Xi| then W, | 0 as. and |X,, — X| < W, for all m < n and
W,, < 2Z. By the previous theorem we only need to show E(|X,, — X||F,) — 0 a.s. Given m,

limsup E(|X,, — X| |Fn) < lim E(Wp,|Fn) = E(W|Foo)-

By conditional DCT, E(W,,|Fs) — 0 a.s. as m — oo. Thus E(|X,, — X||F,) — 0 a.s. With Levy’s
theorem and triangle inequality the desired result follows. O

2.5.4 Riez’s decomposition

We know that any submartingales can be decomposed into a martingale and a predictable sequence
(Doob’s decomposition). Riez’s decomposition allows us to do the similar to uniformly integrable
non-negative supermartingales.

Definition 14 (potential). A supermartingale (X,,) is a potential if it is non-negative and EX, — 0
a.s.

Two notable properties of potentials is that (i) X,, — 0 a.s. and (ii) (X,,) is uniformly integrable.
(i) is from supermartingale convergence and Fatou’s lemma. (ii) follows from E|X, | < € for large
n for all € > 0.

Theorem 31 (Riez). For a non-negative uniformly integrable supermartingale (X,,), there uniquely
exist a uniformly integrable martingale (M) and a potential (V) so that X,, = My, + V.

Proof. By supermartingale convergence, there exists X, such that X,, — X, a.s. Let M,
E(X|Fn) be a regular, thus uniformly integrable martingale. It is enough to show that V,, :
X,, — M, is a potential.

E(Vps1|Fn) = E(Xpi1|Fn) — E(Mpia|Fn) < X, — M, =V, as.
Thus V,, is a supermartingale.
E(Xo|Fn) < limminfE(Xm|fn) < X, as.
for all fixed n. Thus V,, > 0 for all n. Now by Levy’s theorem,
lign Vip=Xoo — lignE(XooLFn) =0 as.

Since (X,,), (M,,) are uniformly integrable, (V},) is also. By Vitali’s lemma EV,, — Elim, V,, = 0.
Thus V,, is a potential.
For the uniqueness part, let M,, + V;, = M}, + V., M,, = E(m|F,) a.s. and M}, = E(n2|F) a.s.

M, — Mr/L = V,i Vo= E(nl‘]:n) - E(n2|]:n) — 0 as.
since V,,,V,, are potentials. By Levy’s theorem this implies E(11]|Fe) — E(n2|Fs) = 0 a.s.

M, = E (E(m|Fo)|Fn)
= E(E(n2|]:oo)|]:n)
= E(na| Fn) = M), a.s.

Equivalence of V,,,V,! directly follows. O
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2.6 Square Integrable Martingales

In this section, we look into martingales with special property - square integrability. Square inte-
grability gives martingale an upper bound for maximal expectation so that it can further be used
to determine the convergence of the sequence.

2.6.1 Square integrable martingales

Definition 15 (square integrable martingale). A martingale X,, is square integrable if EX2 < oo
for all n.

In the following discussion, we assume X, = 0. Notice that X2 is a submartingale and if we
let A, = An—1+4 BE(X?|Fn_1) — Xn—12, Ag = 0, which is from Doob’s decomposition, then
EX?=FA, and

m|]:m 1) Xzfl)

Xn-1)*|Fm-1) -

"o 3o
>

Theorem 32. For a square integrable martingale X,,, let Ao = lim,, A,,. The followings hold.
(i) Esup, X2 <4EA

(ii) Esup, | X,| < 3BAZ
(ii) lim,, X,, exists and is almost surely ﬁm’te on {Aw < o0}
(i) If f : R — R is increasing and fo 2(t)dt < oo, f(t) > 1,Vt, then % — 0 a.s. on

{4 = o0}
Proof. (i) is direct from LP maximal inequality.
(ii) Let N, = inf{n : A,11 > a?}, then it is a stopping time.
P(sup | Xp| > a) = P(sup | Xn| >a, N <o0)+ P(sup | Xn| > a, N =00)
< P(N < 0) + P(sup | XAN > a)

= P(N < ) +hmP(Sup | Xan]| > a)

mn

< P(N < o) + 672 liTILnE\XnANF

= P(N < o0) + aiz lim B Ay

< P(N < o) + G%E(AOO A a?)

= P(Ay > a®) + %E(AOO Aa?).
The last inequality is from the fact that

EAu v < EAn < a? on {N < 0},FA, < EA, < a® on {N = o0}.
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Using this, Fubini’s theorem and integration by substitution, we get
Esupl|X,| = /P(sup | Xn| > a)da
n

C><>1
/PA1/2>a)da—|—/ e E(Ax A a*)da

—EA1/2/ 2/ P(As > b)dbda
a

=3EAY%

(iii) Given a > 0, by (i), Esup,, Xpan, < 4a® < oco. By submartingale convergence, X, an,
converges a.s. and in L2 Now let Cj, = {X,an, converges}, then P(Cy) = 1 and P(NxCy) = 1 as
well. For an arbitrary w € (NpCk) N (As < 00), Ni(w) = inf{n : A,(w) > k} = oo for large enough
k since Ao (w) < 0o. Hence Xyan, (w) = X, (w) converges.

(iv) Let H,, f(A 7 be a bounded predictable sequence. Then Y, =H -X)p= >, % is
m=1 "

a square integrable martingale. Let B, = Y E ((Yy — Yin—1)?|Fm-1) , then

m=1

Z m+1m,+1
< Z /

/ F2(t)dt < o0 as.

By (iii), lim,, Y, exists and is finite almost surely. By Kronecker’s lemma, it suffices to show that
f(Ay) 1 oo. Since fo 2(t)dt < oo, limy f(t) should be oo otherwise it gives contradiction. Since
Ay, f is increasing and f(As) = 00 on (A = 00), this is true. O

m+1

From the facts, we get another form of conditional Borel-Cantelli lemma.

Theorem 33 (the second B-C lemma (3)). Let B, € F,, for alln > 0 and p,, = P(B,|Fpn-1),n > 1.

Then
~ 1B,
Xg?:olﬁlas on{g pn—oo}

nlp” n=1

Proof. Let X,, = X,,—1 + ¥p, — P(Bn|Fn-1), Xo = 0 be a square integrable martingale. Then A4,
from Doob’s decomposition yields A, — A1 = pm — p2, and A, = > o — P2, < S P
m=1

m=1

On (As < 00), X, converges a.s.

X, S i 1p
o = —1—0as. on P = 00).
Zm:l Pm Zm 1 Pm nz:l
On (As = o0), let f(t) = 1V ¢ so that such f satisfies conditions in (iv) of the previous theorem.
Then f(XTZ) = A)j\/l — 0 a.s. on (A = 00). Since A, < 30 _ P, We get Zn o 0 a.s. on
(Ao = ). O
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2.7 Optional Stopping Theorem

In this section, we generalize the bounded version of optional stopping. After that as an example
we will cover theorem regarding assymetric random walk.

2.7.1 Optional stopping theorem

Our first theorem will be the extension of theorem 4.2.9.

Theorem 34 (4.8.1). Let (X,,) be a uniformly integrable submartingale and N be a stopping time.
Then (Xnuan) is a uniformly integrable submartingale.

Proof. Tt is shown that (X, An) is a submartingale in theorem 4.2.9. By Vitali’s lemma X, converges
almost surely and in L' to some X.. Since z — 1 is convex and increasing, X;‘,X;‘AN are
submartingales. Let 7 =n,o0 =n A N then 7,0 are bounded stopping times. By Doob’s inequality,

EX}' v < EX; and

sup EX T v <sup EX,| <supE|X,| < c.
n n n
By Submartingale convergence, X, Ay — Xy a.s. and E|X x| < co.

Bl Xounn|1x, n|>a

S EIXaan|1x, v 1zaN<n T Bl XoaNLx, x>0, N5n
= EIXN[1xy|>a T E[Xn|1lx, >0

Since both terms on the right-hand side goes to 0 as a — 0o, X,an is uniformly integrable. O
Next theorem is the unbounded version of Doob’s inequality.
Theorem 35 (4.8.3). Let (X,,) be a uniformly integrable submartingale, N be a stopping time. Then
EXy<EXy < FEXy
where Xo, = lim,, X,, a.s.
Proof. By the previous theorem X, A x is a uniformly integrable submartingale. By Doob’s inequality
EXy < EX anv < EX,.

By Vitali’s lemma, FX,, - EX, and

. XN , N <o
lim X, Ay =

n Xew=Xny , N=o0
Thus X Ay — Xn a.s. with E|Xy| < oo by Vitali’s lemma and the desired result follows. O]

Finally we state and prove the main theorem.

Theorem 36 (optional stopping). Let L < M be stopping times and (Ynoanr) be a uniformly inte-
grable submartingale. Then EYr, < EYy and Y, < E(Yam|FL) a.s.

Proof. Let X,, = YA then it directly follows that EY;, < EYj;. The rest of the proof is the same
as the first proof of bounded stopping theoreml. O
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Note that we do not need uniform integrability of Y,,. The next theorem guarantees uniform
integrability of stopped martingale of submartingale with uniformly bounded conditional increment.

Theorem 37 (4.8.5). Let X,, be a submartingale with E (| X,4+1 — Xy,||Fn) < B a.s. and N be a
stopping time with EN < co. Then Xuan is uniformly integrable and EXy < EXy.

Proof.

Xnan = Xo + Z Xin—1)lm<n|Xnan| < | Xo| + Z [ Xm — Xm—1]lm<n

m=1

Let Z be the right-hand side of the inequality.

E|Z| < E|Xo| + Z | X0 — Xom—1]|lm<n
< E|Xo| + Y E (Am<nE(1Xm = Xm-1]|Fm-1))
< E[Xo|+B-) _P(m<N)
m

:E‘X0|+BEN<OO

Thus Z is integrable and X, o is uniformly integrable. EX, < EXy follows directly. O

2.7.2 Assymetric random walk

As an application of optional stopping, we look into properties of assymetric random walk. We
define assymetric random walk S, = & + -+ + &, So = 0 where &;’s are i.i.d. with P(§; = 1) = p,
textVar(&1) = 0? < 0o and F,, = o (&1, -+, &) for n > 1, Fy be a trivial o-field. Let p(z) = (1pp)

Theorem 38 (4.8.9). (a)0<p <1 = ©(S,) is a martingale.
(b) Ty :=inf{n : S, =z}, x € Z is a stopping time and P(T, < T}) = % fora <0 <b.
(c)1/2<p<landa<0<b ﬁ Ty < 00 a.s. and P(T, < o0) < 1.

(d)1/2<p<1 = ET, = 5~ Lo b > 0.

Proof of (b). (b) Let T, AT} be a stopping time. By law of iterated logarithm,

SL_ (p_q)

li —— = =1 as.

1mn5up ov/2nloglogn s
S

hmlnfiq) =—1 a.s.

n  oy/2nloglogn

thus S, = n(p — q) £ 0v/2nloglogn. If p > ¢, lim, S,, = co a.s. and T} < co a.s. Similarly T, or Ty,
is almost surely finite in any cases, so N < oo a.s. f N >n,a < Syay =5, <b. If N <n, Syany =
Sy = a or b. ¢(Span) is a bounded, thus uniformly integrable and closable martingale. Note that
Sy = alr, <1, + ¥, >1,. Also note that Ep(Sy) =1 since 1 = Ep(Sy) = Ep(Suan) = Eo(Sn).

1=FEp(Sn) =¢(a)P(Ta <Tp) + ¢(0)P(To > Tp)
= (p(a) — (b)) P(Ta < Tp) + ¢(b).

Organizing both sides gives the result. O
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Proof of (c). Observe that T, < Tp for all § < a < 0. Thus lim,_, o Ty = 0.

P(Tb < OO) = EIP P(Tb < Ta)

i (1 PO -1
=S (l o(b) - so(a)>
= lim 1_790(@ =1

a==o0 ¢(b) — ¢(a)
Similarly, P(T, < o0) = 1/¢(a) < 1. O
Proof of (d). Observe that if a < 0, (inf,, S, < a) = (T, < 00). Since

(1%”)7 , <0

P(inf S, <a) = P(T, < ) =
" 1 ,a>0

we get

ElinfS,|= Y |a|P(inf S, = a)

B a%@ lal ((1;’)) - (1;p>—(a_1)>
-2 (5) (-5

Thus inf, S, is integrable. Let X,, = S,, — n(p — ¢) then X,, is a martingale. Since T}, < oo a.s.,
XnaT, is also a martingale.

=EXo+ (p—q)E(T, An).

Note that inf,, S, < Spar, < band [Spar,| < |inf, S,,|+0 for all n. By DCT, ES,a1, — EST, =
b. By MCT, E(Ty, An) 1 ETy. Thus the desired result follows. O
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