
Understanding Latent Dirichlet Allocation

Park, Sihyung
naturale0@snu.ac.kr

Last Update: February 2021

Latent Dirichlet allocation (LDA) is a three-level bayesian hierarchical model
that is frequently used for topic modelling and document classification. First
proposed to infer population structure from genotype data, LDA not only allows
to represent words as mixtures of topics, but to represent documents as a mixture
of words, which makes it a powerful generative probabilistic model.

In this article, I would like to explain backgrounds and model structure, and to
implement it from scratch with numpy.

Contents
Backgrounds 2

TF-IDF matrix . 2
Latent Semantic Analysis . 3
Probabilistic LSA . 4
Latent Dirichlet Allocation . 4

The Model 4
Generative process . 5
Mixture representations . 6

Words . 6
Documents . 6

Variational EM 7
Variational inference . 7
Variational EM . 8
Python implementation from scratch 9

E-step . 9
M-step . 10
Results . 12

Gibbs Sampling 12
Problem setting in the original paper 12

1

"Model with admixture" . 14
Gibbs sampling . 15
Collapsed Gibbs sampling . 16
Python implementation from scratch 17

The sampler . 17
Recover β̂ and θ̂ . 19

Smoothed LDA 19
Empirical vs. fuller Bayes . 21
Smooth LDA . 21
Variational EM for smooth LDA . 22

E-step . 22
M-step . 24

Backgrounds
Before we get into the detail, I would like to mention and define terms that will
be used frequently hereafter.

Tokens (or words) are grammatical and/or semantic unit of language, usually
separated with each other in a sentence by a space1. Documents (or sentence)
are collection of words in specific orders. A Corpus is a collection of documents.
Vocabulary is the set of all words in a corpus.

Topics are latent structure of documents that cannot be explicitly observed,
but can be represented as sets of similar words. Bayesian hierarchical model
is a statistical model that sequentially conditioning random variables and their
parameters with higher-order hyperparameters. Topic modelling is a process
to identify such structure with statistically modeling the documents. Genera-
tive models, unlike discriminative models, learn the underlying distributional
structure so that it can generate the random data.

While the terms might not be familiar to some, it will become clear with real
model description in the next post.

TF-IDF matrix
In the beginning of embedding documents to numeric vectors, TF-IDF matrix
was frequently used. Term frequency-inverse document frequency (TF-IDF) is a
simple yet useful index to quickly convert documents into vectors. TF-IDF is

1While tokens are actually processed words by stemming/lemmatizing processes, I will not
separate the two here.

2

calculated as follows. First, term frequency (TF) is defined for each words in
vocabulary (vi) and documents(wd).

TF(vi,wd) = (of occurence of vi in wd)

This is sometimes refered to as raw term frequency.

Inverse document frequency (IDF) is defined as an adjusted inverse of document
frequency (DF).

DF(vi) = (of documents contaning vi)IDF(vi, D) = log
(

of documents in D
1 + DF(vi)

)

Finally, TF-IDF is a product of TF and IDF.

TF-IDF(vi,wd, D) = TF(vi,wd) · IDF(vi, D)

Computing TF-IDF for all documents and words in a corpus yields a document-
term matrix. Row vectors of the matrix can be viewed as document embeddings.

Latent Semantic Analysis

Figure 1: The scheme of latent semantic analysis.

TF-IDF LSA is just a singular value decomposition of TF-IDF matrix. The
rationale is to capture lower-dimensional latent structure behind terms and
documents. While TF-IDF reveals provides information, the matrix is sparse
and the dimension of each word vector is as large as the size of vocabulary (usually
in the order of millions). By applying r-truncated singular value decomposition
to TF-IDF matrix of size M × V where M is the size of corpus (total number of
documents) and V is the size of vocabulary, we get two matrices of size M × r
and r × V . The first matrix can be used as a document embedding, and the
second as a word embedding.

3

https://en.wikipedia.org/wiki/Singular_value_decomposition#Truncated_SVD

Probabilistic LSA
pLSA is an attempt to model the latent topics as mixture distributions. While
LSA is an exact decomposition of TF-IDF matrix, pLSA poses distributional
assumptions to word and document generation and finds parameters that best
explain it. In this model, words are realized random variables that follow
mixtures of multinomial distributions and such mixtures can be veiwed
as topics.

It was a paradigm shift to use hierarchical model for topic modelling, but pLSA
has weakness: While pLSA is a generative model for words, it is not generative
in terms of (unseen) documents. Hence as the number of documents in the
training set grows, the number of parameters of the model linearly grows as well
which makes it non-scalable and vulnerable to overfitting.

Latent Dirichlet Allocation
LDA solves the exact problem that pLSA had: it additionally models documents
as mixture distribution of topics starting from the meaning behind bag-of-words
assumption.

Under BoW assumption, order of words in a document, and in extension, order of
documents in a corpus is disregarded. To put it in a statistical statement, BoW
assumes that words and documents are exchangeable. de Finetti’s theorem states
that the distribution of a sequence of exchangeable random variables can be
represented as a mixture (weighted mean) of distributions of IID random variables.
Thus a desired generative model has not only mixture representations
of words, but also of documents.

The result of consideration is LDA, Details of which will be covered in the next
post.

The Model
In the previous section, topic models frequently used at the time of development
of LDA was covered. At the end of the post, I briefly introduced the rationale
behind LDA. In this post, I would like to elaborate on details of the model
architecture.

4

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Bag-of-words_model

Generative process
Suppose we have a corpus with vocabulary of size V and every words w and
every topics z are one-hot encoded (i.e. wi = 1 and wj = 0, j 6= i if w is the i-th
term in the vocabulary). Define a document w as a finite sequence of N words

w = (w1, · · · , wN)

and denote a corpus D of M documents

D = {w1, · · · ,wM}.

For k prespecified number of topics, LDA assumes that a d-th document wd ∈ D
with length Nd is "generated" in the following steps2:

1. θd ∼ Dk(α). The multinomial parameter θd ∈ Rk is drawn from k-
dimensional Dirichlet distribution.

2. For each words wdn, n = 1, · · · , Nd in the document:

1. zdn ∼M_k(1, θd). A topic zdn for a word wdn is drawn from k-dim
multinomial distribution.

2. wdn‖zdn, β ∼ M_V (1, βi:zi
dn

=1). A word wdn given the topic zdn is
drawn from V -dim multinomial distribution.

α ∈ Rk, β ∈ Rk×V are hyperparameters that is common to all of the documents
in a corpus. β is an unknown constant that satisfies βij = P (wj = 1‖zi = 1).
That is, given a topic z such that zi = 1, probability of wn given β follows
multinomial distribution with parameter βi.

θ = (θ1, · · · , θM) ∈ RM×k can be seen as the document-specific random topic
matrix as θd generates topic for each words in d-th document as in the process.

Blei et al. presented a graphical representation of the model. This helps
understanding the structure as it illustrates the "scope" of each parameters. Only
the words wdn’s, that are filled with grey, are observable. Note that each word
w is generated by z which is generated by θ which is again generated by α; This
makes LDA a three-level hierarchical model.

2The number of words in a document is determined by Poisson distribution (N ∼ P(ξ)). I
omitted this part because N is an ancillary variable and it does not make the model description
different even if it is considered as a constant.

5

https://en.wikipedia.org/wiki/One-hot

Mixture representations
In the previous section, I mentioned that under LDA model both words and
documents can be represented as mixture distributions by de Finetti’s theorem.
This property takes full advantage of bag-of-words assumption to reduce the
number of parameters in large corpus and makes LDA a proper document model.
Here, I would like to elaborate on it.

Words

By marginalizing over topics z, the word distribution is given by

P (wdn|θd, β) =
∑
z

P (wdn|z, β)P (z|θd),

where it is a mixture distribution of mixture weights P (z‖θd) and components
P (wdn‖z, β).

Documents

We assumed in LDA that words are generated by topics and topics are ex-
changable within a document. Thus the joint density of θd, zd,wd is

p(θd, zd,wd|α, β) = P (θd|α)
Nd∏
n=1

P (zdn|θd)p(wdn|zdn, β)

Marginalize it over z and use the mixture representation of word distribution to
get

p(θd,wd|α, β) = P (θd|α)
Nd∏
n=1

P (wdn|θd, β).

Marginalize again with respect to θd and we get the continuous mixture repre-
sentation of the document wd

p(wd|α, β) =
∫
P (θd|α)

Nd∏
n=1

P (wdn|θd, β) dθd,

where P (θd‖α) are weights and
∏Nd
n=1 P (wdn‖θd, β) are components.

6

Variational EM
Now that we know the structure of the model, it is time to fit the model
parameters with real data. Among the possible inference methods, in this section
I would like to explain the variational expectation-maximization algorithm.

Variational inference
Variational inference (VI) is a method to approximate complicated distributions
with a family of simpler surrogate distributions. In order to compute posterior
distribution of latent variables given a document wd

p(θd, zd|wd, α, β) = p(θd, zd,wd|α, β)
p(wd|α, β) ,

it is necessary to compute the denominator

p(wd|α, β) = Γ(
∑
i αi)∏

i Γ(αi)

∫ (k∏
i=1

θαi−1
di

) N∏
n=1

k∏
i=1

V∏
j=1

(θdiβij)w
j
dn

 dθ.

However, it is intractable due to the coupling of θ and β at the inner most
parenthesis. Because of this, we utilize VI and Jensen’s inequality to achieve
lower bound of the log likelihood log p(w‖α, β) for parameter estimation of LDA.

To be specific, we let the variational distribution q to be parametrized by the
variational parameters γ = γ(w) and φ = φ(w), each works similarly to α and β
of the true distribution, respectively. We set the variational distribution

q(θd, zd|γ(wd), φ(wd)) = q(θd|γ(wd))
Nd∏
n=1

q(zdn|φn(wd))

where

θd ∼ Dk(γ(wd)), zdn ∼Mk(φ(wd)).

Graphical representation of the surrogate is depicted in the figure 5 of Blei et al.
(2003).

7

Figure 2: The latent Dirichlet allocation by variational expectation-maximization
algorithm.

Variational EM
Expectation maximization is a special case of minorization-maximization (MM)
algorithm. I would like to use terminology from MM since it is more intuitive to
explain the variational EM. To maximize a target likelihood function f(x), EM
algorithm works in the following way:

1. Set a family of simpler surrogate functions G.

2. Repeat until convergence:

1. (E-step) Minorize f at x(t) with g(t+1) ∈ G.

2. (M-step) Update x(t+1) = arg max g(t+1)(x).

Variational EM follows the framework of expectation-maximization, while uses
variational inference to minorize the target function at the E-step. By Jensen’s
inequality, we get the lower bound on the log likelihood with respect to the
variational distribution defined above:

log p(w|α, β) ≥ Eq log p(θ, z,w|α, β)− Eq log q(θ, z) =: L(γ, φ|α, β).

Then variational EM algorithm for solving LDA is as follows:

1. Repeat until convergence:

1. (E-step) Update (γ(t+1), φ(t+1)) = arg max(γ,φ) L(γ, φ‖α(t), β(t)).

2. (M-step) Update (α(t+1), β(t+1)) = arg max(α,β) L(γ(t+1), φ(t+1)‖α, β).

For β, φ and γ, closed form update formula can be easily derived by differentiating
L, forming the Lagrangian and setting it to zero. I will leave this part for reading

8

https://en.wikipedia.org/wiki/MM_algorithm

since it is a trivial, exhausting calculation well-described in appendix A.3 (Blei
et al., 2003).

For α, since L has Hessian of the form diag(h) + 1z1′, we use linear-time
Newton-Raphson algorithm to update it.

To summarize, LDA solving variational EM algorithm repeats the following until
the parameters converge.

• In the E-step, for d = 1, · · · ,M ,

1. For n = 1, · · · , Nd and i = 1, · · · , k,

1. φ(t+1)
dni = βiwdn exp

(
Ψ(γ(t)

di)−Ψ
(∑k

i=1 γ
(t)
di

))
.

2. Normalize φ(t+1)
dn to sum to 1.

3. γ(t+1)
d = α(t) +

∑Nd
n=1 φ

(t+1)
dn .

• In the M-step,

1. β(t+1)
ij =

∑M
d=1

∑Nd
n=1 φ

(t+1)
dni wj

dn.

2. Update α(t+1) with linear-time Newton method.

Here, Ψ is the digamma function. I have yet clarified the update rule of linear-
time Newton-Raphson algorithm. This is in appendix A.4.2 of Blei et al. (2003),
which in its core is a mere block matrix inversion formula

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.

So I will replace the explanation to Python implementation (_update()) below.

Python implementation from scratch
E-step

def E_step(docs, phi, gamma, alpha, beta):
"""
Minorize the joint likelihood function via variational inference.
This is the E-step of variational EM algorithm for LDA.
"""
optimize phi
for m in range(M):

phi[m, :N[m], :] = (beta[:, docs[m]] * np.exp(
psi(gamma[m, :]) - psi(gamma[m, :].sum())

).reshape(-1, 1)).T

9

https://en.wikipedia.org/wiki/Digamma_function

Normalize phi
phi[m, :N[m]] /= phi[m, :N[m]].sum(axis=1).reshape(-1, 1)
if np.any(np.isnan(phi)):

raise ValueError("phi nan")

optimize gamma
gamma = alpha + phi.sum(axis=1)

return phi, gamma

It is the exact translation of the update equation at the above.

M-step

def M_step(docs, phi, gamma, alpha, beta, M):
"""
maximize the lower bound of the likelihood.
This is the M-step of variational EM algorithm for (smoothed) LDA.

update of alpha follows from appendix A.2 of Blei et al., 2003.
"""
update alpha
alpha = _update(alpha, gamma, M)

update beta
for j in range(V):

beta[:, j] = np.array(
[_phi_dot_w(docs, phi, m, j) for m in range(M)]

).sum(axis=0)
beta /= beta.sum(axis=1).reshape(-1, 1)

return alpha, beta

This is also the exact replication of the equations, but with some abstraction for
readability.

_update() is the implementation of linear-time Newton-Raphson algorithm.

import warnings

def _update(var, vi_var, const, max_iter=10000, tol=1e-6):
"""
From appendix A.2 of Blei et al., 2003.
For hessian with shape `H = diag(h) + 1z1'`

10

To update alpha, input var=alpha and vi_var=gamma, const=M.
To update eta, input var=eta and vi_var=lambda, const=k.
"""
for _ in range(max_iter):

store old value
var0 = var.copy()

g: gradient
psi_sum = psi(vi_var.sum(axis=1)).reshape(-1, 1)
g = const * (psi(var.sum()) - psi(var)) \

+ (psi(vi_var) - psi_sum).sum(axis=0)

H = diag(h) + 1z1'
z: Hessian constant component
h: Hessian diagonal component
z = const * polygamma(1, var.sum())
h = -const * polygamma(1, var)
c = (g / h).sum() / (1./z + (1./h).sum())

update var
var -= (g - c) / h

check convergence
err = np.sqrt(np.mean((var - var0) ** 2))
crit = err < tol
if crit:

break
else:

warnings.warn(f"max_iter={max_iter} reached: values might not be optimal.")

return var

_phi_dot_w() computes
∑Nd
n=1 dniw

j
dn.

def _phi_dot_w(docs, phi, d, j):
"""
\sum_{n=1}ˆ{N_d} _{dni} w_{dn}ˆj
"""
return (docs[d] == j) @ phi[d, :N[d], :]

11

Results

I ran LDA inference on M = 2000 documents of Reuters News title data
with k = 10 topics. Top 9 important words in each topic (a mixture of word
distribution) extracted from fitted LDA is as follows:

TOPIC 00: ['ec' 'csr' 'loss' 'bank' 'icco' 'unit' 'cocoa' 'fob' 'petroleum']
TOPIC 01: ['raises' 'acquisition' 'prices' 'prime' 'rate' 'w' 'completes' 'mar', 'imports']
TOPIC 02: ['year' 'sets' 'sees' 'net' 'stock' 'dividend' 'l' 'industries' 'corp']
TOPIC 03: ['pct' 'cts' 'gdp' 'opec' 'shr' 'february' 'plc' 'ups' 'rose']
TOPIC 04: ['u' 'japan' 'fed' 'trade' 'gaf' 'ems' 'says' 'dlr' 'gnp']
TOPIC 05: ['usda' 'f' 'ag' 'international' 'sell' 'report' 'ge' 'corn' 'wheat']
TOPIC 06: ['k' 'market' 'money' 'rate' 'eep' 'treasury' 'prime' 'says' 'mln']
TOPIC 07: ['qtr' 'note' '4th' 'net' 'loss' 'ico' 'corp' '1st' 'group']
TOPIC 08: ['dlrs' 'mln' 'bp' 'march' 'corp' 'week' 'canada' 'e' 'bank']
TOPIC 09: ['unit' 'buy' 'says' 'sale' 'c' 'sells' 'completes' 'american' 'grain']

Topic-word distribution (β) and document-topic distribution (θ) recovered from
LDA is as follows. i-th column from the figure left represents probabilities of
each words to be generated given the topic zi so it sums to 1. Similarly, d-th
row from the figure right represents the d-th document(wd)’s mixture weights
on topics, so it also sums to 1.

Full code and result are available here (GitHub).

Gibbs Sampling
In the last section, I explained LDA parameter inference using variational EM
algorithm and implemented it from scratch. In this section, let’s take a look at
another algorithm proposed in the original paper that introduced LDA to derive
approximate posterior distribution: Gibbs sampling. In addition, I would like to
introduce and implement from scratch a collapsed Gibbs sampling method that
can efficiently fit topic model to the data.

Problem setting in the original paper
Pritchard and Stephens (2000) originally proposed the idea of solving population
genetics problem with three-level hierarchical model. The problem they wanted
to address was "inference of population struture using multilocus genotype data."
For those who are not familiar with population genetics, this is basically a
clustering problem that aims to cluster individuals into clusters (population)

12

https://github.com/naturale0/NLP-Do-It-Yourself/blob/main/NLP_with_PyTorch/3_document-embedding/3-1.%20latent%20dirichlet%20allocation.ipynb

Figure 3: Result of the variational EM

13

based on similarity of genes (genotype) of multiple prespecified locations in DNA
(multilocus).

The researchers proposed two models: one that only assigns one population to
each individuals ("model without admixture"), and another that assigns mixture
of populations ("model with admixture"). The latter is the model that later
termed as LDA. Before we get to the inference step, I would like to briefly cover
the original model with the terms in population genetics, but with notations I
used in the previous sections.

"Model with admixture"
In population genetics setup, our notations are as follows:

• V is the total number of possible alleles in every loci.

• wn: genotype of the n-th locus. One-hot encoded so that win = 1 and
wjn = 0,∀j 6= i for one i ∈ V .

• zn: population of origin of wn.

• w_d = (wd1, · · · , wdN): genotype of d-th individual at N loci.

• D = (w1, · · · ,wM): whole genotype data with M individuals.

Generative process of genotype of d-th individual wd with k predefined pop-
ulations described on the paper is a little different than that of Blei et al.
(2003).

1. βk ∼ DV (η).

2. θd ∼ Dk(α). θ_di is the probability that d-th individual’s genome is
originated from population i.

3. for n = 1, · · · , N :

1. zdn is chosen with probability P (zidn = 1‖θd, β) = θdi.

2. wdn is chosen with probability P (widn = 1‖zdn, θd, β) = βij .

Since β is independent to θd and affects the choice of wdn only through zdn,
I think it is okay to write P (zidn = 1‖θd) = θdi instead of formula at 2.1 and
P (widn = 1‖zdn, β) = βij instead of 2.2.

The only difference between this and (vanilla) LDA that I covered so far is that
β is considered a Dirichlet random variable here. In fact, this is exactly the same
as smoothed LDA described in Blei et al. (2003) which will be described in
the next section.

14

Gibbs sampling
To estimate the intracktable posterior distribution, Pritchard and Stephens
(2000) suggested using Gibbs sampling. Gibbs sampling is a method of
Markov chain Monte Carlo (MCMC) that approximates intractable joint dis-
tribution by consecutively sampling from conditional distributions. Suppose
we want to sample from joint distribution p(x1, · · · , xn). Assume that even
if directly sampling from it is impossible, sampling from conditional distribu-
tions p(xi‖x1 · · · , xi−1, xi+1, · · · , xn) is possible. Then repeatedly sampling from
conditional distributions as follows

1. Repeat:

1. Sample x(t+1)
1 from p(x1‖x(t)

2 , · · · , x(t)
n).

2. Sample x(t+1)
2 from p(x2‖x(t+1)

1 , x
(t)
3 , · · · , x(t)

n).

3.
...

4. Sample x(t+1)
n from p(xn‖x(t+1)

1 , · · · , x(t+1)
n−1).

gives us an approximate sample (x(m)
1 , · · · , x(m)

n) that can be considered as
sampled from the joint distribution for large enough m’s.

Below is a paraphrase, in terms of familiar notation, of the detail of the Gibbs
sampler that samples from posterior of LDA. Let

ni = (ni1, · · · , niV)md = (md1, · · · ,mdk)

where nij the number of occurrence of word j under topic i, mdi is the number
of loci in d-th individual that originated from population i.

1. Update β(t+1) with a sample from βi‖w, z(t) ∼ DV (η + ni).

2. Update θ(t+1) with a sample from θd‖w, z(t) ∼ Dk(α(t) + md).

3. Update z(t+1)
d with a sample by probability

P (zidn = 1|w, β(t+1)) =
θdiβ

(t+1)
iwdn∑M

d=1 θdiβ
(t+1)
iwdn

.

4. Update α(t+1) by the following process:

1. Sample α′ from N (α(t), σ2
α(t)) for some σ2

α(t) .

2. Let a = p(α′‖θ(t),w,z(t))
p(α(t)‖θ(t),w,z(t)) ·

φα′ (α(t))
φ
α(t) (α′) .

3. Do not update α(t+1) if α′ ≤ 0. Update α(t+1) = α′ if a ≥ 1, otherwise
update it to α′ with probability a.

15

The update rule in step 4 is called Metropolis-Hastings algorithm.

Collapsed Gibbs sampling
While the proposed sampler works, in topic modelling we only need to estimate
document-topic distribution θ and topic-word distribution β. Griffiths and
Steyvers (2002) boiled the process down to evaluating the posterior P (z‖w) ∝
P (w‖z)P (z) which was intractable. Notice that we marginalized the target
posterior over β and θ. This makes it a collapsed Gibbs sampler; the
posterior is collapsed with respect to β, θ.

Marginalizing the Dirichlet-multinomial distribution P (w, β‖z) over β from
smoothed LDA, we get the posterior topic-word assignment probability

P (w|z) =
(

Γ(V η)
Γ(η)V

)k k∏
i=1

∏V
j=1 Γ(nij + η)
Γ(ni· + V η)

where nij is the number of times word j has been assigned to topic i, just as in
the vanilla Gibbs sampler. Marginalizing another Dirichlet-multinomial P (z, θ)
over θ yields

P (z) =
(

Γ(kα)
Γ(α)k

)M M∏
d=1

∏k
i=1 Γ(ndi + α)
Γ(nd· + kα)

where ndi is the number of times a word from document d has been assigned to
topic i. Multiplying these two equations, we get

P (zidn = 1|z(−dn),w) ∝
n(−dn),iwdn + η

n(−dn),i· + V η

n(−dn),di + α

n(−dn),d· + kα
,

where z_(−dn) is the word-topic assignment for all but n-th word in d-th
document, n(−dn) is the count that does not include current assignment of zdn.

The first term can be viewed as a (posterior) probability of wdn‖zi (i.e. βdni),
and the second can be viewed as a probability of zi given document d (i.e. θdi).
We run sampling by sequentially sample z(t+1)

dn given z(t)
(−dn),w after one another.

After sampling z‖w with Gibbs sampling, we recover θ and β with

β̂iwn = niwn + η

ni· + V η
, θ̂di = ndi + α

nd· + kα
,

16

https://en.wikipedia.org/wiki/Metropolis\T1\textendash Hastings_algorithm#Step-by-step_instructions

which are marginalized versions of the first and second term of the last equation,
respectively.

Python implementation from scratch
Here, I would like to implement the collapsed Gibbs sampler only, which is more
memory-efficient and easy to code.

The sampler

This is the entire process of gibbs sampling, with some abstraction for readability.

def run_gibbs(docs, vocab, n_topic, n_gibbs=2000, verbose=True):
"""
Run collapsed Gibbs sampling
"""
initialize required variables
_init_gibbs(docs, vocab, n_topic, n_gibbs)

if verbose:
print("\n", "="*10, "START SAMPLER", "="*10)

run the sampler
for t in range(n_gibbs):

for d in range(M):
for n in range(N[d]):

w_dn = docs[d][n]

decrement counter
i_t = assign[d, n, t] # previous assignment
n_iw[i_t, w_dn] -= 1
n_di[d, i_t] -= 1

assign new topics
prob = _conditional_prob(w_dn, d)
i_tp1 = np.argmax(np.random.multinomial(1, prob))

increment counter with new assignment
n_iw[i_tp1, w_dn] += 1
n_di[d, i_tp1] += 1
assign[d, n, t+1] = i_tp1

17

print out status
if verbose & ((t+1) % 50 == 0):

print(f"Sampled {t+1}/{n_gibbs}")

In _init_gibbs(), instantiate variables (numbers V, M, N, k and hyperparameters
alpha, eta and counters and assignment table n_iw, n_di, assign).

def _init_gibbs(docs, vocab, n_topic, n_gibbs=2000):
"""
Initialize t=0 state for Gibbs sampling.
Replace initial word-topic assignment
ndarray (M, N, N_GIBBS) in-place.
"""
initialize variables
init_lda(docs, vocab, n_topic=n_topic, gibbs=True)

word-topic assignment
global assign
N_max = max(N)
assign = np.zeros((M, N_max, n_gibbs+1), dtype=int)
print(f"assign: dim {assign.shape}")

initial assignment
for d in range(M):

for n in range(N[d]):
randomly assign topic to word w_{dn}
w_dn = docs[d][n]
assign[d, n, 0] = np.random.randint(k)

increment counters
i = assign[d, n, 0]
n_iw[i, w_dn] += 1
n_di[d, i] += 1

_conditional_prob() is the function that calculates P (zidn = 1‖z(−dn),w)
using the multiplicative equation above.

def _conditional_prob(w_dn, d):
"""
P(z_{dn}ˆi=1 | z_{(-dn)}, w)
"""
prob = np.empty(k)

for i in range(k):
P(w_dn | z_i)
_1 = (n_iw[i, w_dn] + eta) / (n_iw[i, :].sum() + V*eta)
P(z_i | d)
_2 = (n_di[d, i] + alpha) / (n_di[d, :].sum() + k*alpha)

18

prob[i] = _1 * _2

return prob / prob.sum()

After running run_gibbs() with appropriately large n_gibbs, we get the counter
variables n_iw, n_di from posterior, along with the assignment history assign
where [:, :, t] values of it are word-topic assignment at sampling t-th iteration.

Recover β̂ and θ̂

Now we need to recover topic-word and document-topic distribution from the
sample.

= np.empty((k, V))
= np.empty((M, k))

for j in range(V):
for i in range(k):

[i, j] = (n_iw[i, j] + eta) / (n_iw[i, :].sum() + V*eta)

for d in range(M):
for i in range(k):

[d, i] = (n_di[d, i] + alpha) / (n_di[d, :].sum() + k*alpha)

Finally we can plot it as a heatmap.

Full code and result are available here (GitHub).

Smoothed LDA
From background to two inference processes, I covered all the important details
of LDA so far. One thing left over is a difference between (basic) LDA and
smooth LDA. Consider this last section as a cherry on top.

19

https://github.com/naturale0/NLP-Do-It-Yourself/blob/main/NLP_with_PyTorch/3_document-embedding/3-1.%20latent%20dirichlet%20allocation.ipynb

Figure 4: Result of the Gibbs sampling

20

Empirical vs. fuller Bayes
Not every Bayesian approches are the same. One of the most important aspect
when applying Bayesian model to real-world data is decision of hyperparameters.
For the task, empirical Bayes method "fit" the model to the data to derive, in
many times, point estimate of hyperparameter, while standard (fuller) Bayes
predefine the prior distribution before any data and update it later using the
data as an evidence.

Recall the basic LDA that I explained from the first to the third sections. Pay
attention to the part that hyperparameter β does not have a distribution; it
is assumed to be an unknown but fixed value. This makes the basic LDA an
empirical Bayes model. Can we extend this to make a fuller Bayes model?

Smooth LDA
In order to extend the model to be fully Bayesian, all we need to do is to regard β
as another hidden parameter by endowing β a Dirichlet prior βi ∼ DV (~η) for all
i = 1, · · · , k where ~η = (η, · · · , η) is a V -length vectors of the same elements
η by exchangeability. Blei et al. (2003) provides a graphical representation of
this extended, or smoothed version of LDA. I added a modified variational
distribution for it next to the figure.

Figure 5: The smoothed LDA

So why would we want to make a model fully Bayesian? This is because of
generability. If we use fixed point estimate for β, we get word-topic assignment
that assigns probability zero to words that were not in training data. By giving
β a distribution, we can smooth it out to assign positive probability to all known
and unknown words. In this perspective, fuller Bayes method can be seen as a
smoothing method for hierarchical models.

21

Variational EM for smooth LDA
I already explained inference methods for smooth LDA: Gibbs sampling with
Metropolis-Hastings rule proposed by Pritchard et al. (2000), and Collapsed
gibbs sampling that Griffiths and Steyvers (2002) proposed are the ones. Here I
would like to continue the discussion and be more specific on variational EM
method that Blei et al. (2003) presented. If you are not familiar with variational
EM algorithm, please take a look at the previous sections before moving on.

E-step

As in the figure that I put next to the Figure 7, we add additional variational
parameter λ that acts as a surrogate of η and consider βi ∼ DV (λi) for i =
1, · · · , k. Then the variational distribution becomes

q(θ, z, β|γ, φ, λ) =
k∏
i=1
DV (βi|λi)

M∏
d=1

q
(
θd, zd|γ(wd), φ(wd)

)
Since β part is multiplicative to the others, update rule for φ and γ remains the
same. (Actually, update rule of φ changes a little as it contains a β term which
is now considered a random variable.) Update rule for λ is easy to derive by
(again) differentiating the variational lower bound L and setting it to zero.

There were no derivation depicted in the Blei et al. (2003), so I did one by
myself. The variational lower bound L is

22

L(γ, φ, λ|α, η) =
k∑
i=1

log Γ(V η)− V log Γ(η) + (η−1)
V∑
j=1

(
Ψ(λij)−Ψ

(V∑
j=1

λij

))
+

M∑
d=1

(
log Γ

(k∑
i=1

αi

)
−

k∑
i=1

log Γ(αi) +
k∑
i=1

(αi − 1)
(

Ψ(γdi)−Ψ
(k∑
i=1

γdi

)))

+
M∑
d=1

Nd∑
n=1

k∑
i=1

φdni

(
Ψ(γdi)−Ψ

(k∑
i=1

γdi

))

+
M∑
d=1

Nd∑
n=1

k∑
i=1

V∑
j=1

φdniw
j
dn

Ψ(λij)−Ψ
(V∑
j=1

λij

)
−

k∑
i=1

log Γ
(V∑
j=1

λij

)
−

V∑
j=1

log Γ(λij) +
V∑
j=1

(λij−1)
(

Ψ(λij)−Ψ
(V∑
j=1

λij

))
−

M∑
d=1

(
log Γ

(k∑
i=1

γdi

)
−

k∑
i=1

log Γ(γdi) +
k∑
i=1

(γdi − 1)
(

Ψ(γdi)−Ψ
(k∑
i=1

γdi

)))

−
M∑
d=1

Nd∑
n=1

k∑
i=1

φdni log φdni.

Organize only the terms with λij and differentiate it then we get

∂L

∂λij
= η

Ψ′(λij)−Ψ′
(V∑
j=1

λij

)
+

M∑
d=1

Nd∑
n=1

φdniw
j
dn

Ψ′(λij)−Ψ′
(V∑
j=1

λij

)
−M

Ψ
(V∑
j=1

λij

)
−Ψ (λij)


−M

Ψ(λij)−Ψ
(V∑
j=1

λij

)
− λij

Ψ′(λij)−Ψ′
(V∑
j=1

λij

)
Thus letting it zero yields the update rule for λ:

λ
(t+1)
ij = η(t) +

M∑
d=1

Nd∑
n=1

φ
(t)
dniw

j
dn.

23

M-step

Update rule for α is the same: we update it using linear-time Newton-Raphson.
What is important is that update rule for η is also the same as α. It can be
confirmed by organizing only the terms with η.

L[η] =
k∑
i=1

log Γ(V η)− V log Γ(η) + (η − 1)
V∑
j=1

(
Ψ(λij)−Ψ

(V∑
j=1

λij

)) .

This is exactly the same as L[α] if replacing η with α, k with M , and η with γ.
(Recall that ~η is a vector of all the same elements) Thus by exactly the same
algorithm (implemented as _update()), we can update η.

To summarize, the whole process of variational EM is as follows: First,
initialize φ(0)

dni := 1/k for all i = 1, · · · , k, n = 1, · · · , Nd and d = 1, · · · ,M along
with γ

(0)
di := α

(0)
i + N/k for all i = 1, · · · , k, d = 1, · · · ,M . Then repeat the

following until convergence.

1. In the E-step, for d = 1, · · · ,M ,

1. For n = 1 to N and i = 1 to k,

1. φ(t+1)
dni = exp

(
Ψ(λ(t)

ij)−Ψ
(∑V

j=1 λ
(t)
ij

)
+ Ψ(γ(t)

di −Ψ
(∑k

i=1 γ
(t)
di

))
.

2. For j = 1, · · · , V ,

1. λ(t+1)
ij = η(t) +

∑M
d=1

∑Nd
n=1 φ

(t+1)
dni wjdn.

2. Normalize φ(t+1)
dn to sum to 1.

3. γ(t+1)
d = α+

∑Nd
n=1 φ

(t+1)
dni .

2. In the M-step,

1. Update α(t+1) with linear-time Newton-Raphson.

2. Update ~η(t+1) with linear-time Newton-Raphson.

Python code for the algorithm is in the last part of this notebook (GitHub).

24

https://github.com/naturale0/NLP-Do-It-Yourself/blob/main/NLP_with_PyTorch/3_document-embedding/3-1.%20latent%20dirichlet%20allocation.ipynb

References

• Griffiths, Steyvers. 2004. Finding scientific topics. Proceedings of
the National Academy of Sciences of the United States of America. 101:
5228-5235.

• Blei, Ng, Jordan. 2003. Latent Dirichlet Allocation. Journal of
Machine Learning Research. 3 (4–5): 993–1022.

• Pritchard, Stephens, Donnelly. 2000. Inference of Population Struc-
ture Using Multilocus Genotype Data. Genetics. 155: 945–959.

25

	Backgrounds
	TF-IDF matrix
	Latent Semantic Analysis
	Probabilistic LSA
	Latent Dirichlet Allocation

	The Model
	Generative process
	Mixture representations
	Words
	Documents

	Variational EM
	Variational inference
	Variational EM
	Python implementation from scratch
	E-step
	M-step
	Results

	Gibbs Sampling
	Problem setting in the original paper
	"Model with admixture"
	Gibbs sampling
	Collapsed Gibbs sampling
	Python implementation from scratch
	The sampler
	Recover \hat\beta and \hat\theta

	Smoothed LDA
	Empirical vs. fuller Bayes
	Smooth LDA
	Variational EM for smooth LDA
	E-step
	M-step

