4.8. Optional stopping theorem
In this section, we generalize the bounded version of optional stopping. After that as an example we will cover theorem regarding assymetric random walk.
Optional stopping theorem
Our first theorem will be the extension of theorem 4.2.9.
It is shown that $(X_{n\wedge N})$ is a submartingale in theorem 4.2.9. By Vitali's lemma $X_n$ converges almost surely and in $L^1$ to some $X_\infty.$ Since $x \mapsto x^+$ is convex and increasing, $X_n^+, X_{n\wedge N}^+$ are submartingales. Let $\tau=n, \sigma=n\wedge N$ then $\tau,\sigma$ are bounded stopping times. By Doob's inequality, $EX_{n\wedge N}^+ \le EX_n^+$ and $$\sup_n EX_{n\wedge N}^+ \le \sup_n EX_n^+ \le \sup_n E|X_n| < \infty.$$ By Submartingale convergence, $X_{n\wedge N} \to X_N$ a.s. and $E|X_N| < \infty.$ $$\begin{aligned} &E|X_{n\wedge N}| \mathbf{1}_{|X_{n\wedge N}| \ge a} \\ &\le E|X_{n\wedge N}| \mathbf{1}_{|X_{n\wedge N}| \ge a, N \le n} + E|X_{n\wedge N}| \mathbf{1}_{|X_{n\wedge N}| \ge a, N>n} \\ &= E|X_N| \mathbf{1}_{|X_N| \ge a} + E|X_n| \mathbf{1}_{|X_n| \ge a}. \end{aligned}$$ Since both terms on the right-hand side goes to 0 as $a\to\infty,$ $X_{n\wedge N}$ is uniformly integrable.
Next theorem is the unbounded version of Doob’s inequality.
By the previous theorem $X_{n\wedge N}$ is a uniformly integrable submartingale. By Doob's inequality $$EX_0 \le EX_{n\wedge N} \le EX_n.$$ By Vitali's lemma, $EX_n \to EX_\infty$ and $$\begin{aligned} \lim_n X_{n\wedge N} = \begin{cases} X_N &,~ N<\infty \\ X_\infty = X_N &,~ N=\infty \end{cases} \end{aligned}$$ Thus $X_{n\wedge N} \to X_N$ a.s. with $E|X_N| < \infty$ by Vitali's lemma and the desired result follows.
Finally we state and prove the main theorem.
Let $X_n = Y_{n\wedge M}$ then it directly follows that $EY_L \le EY_M.$ The rest of the proof is the same as the first proof of bounded stopping theorem.
Note that we do not need uniform integrability of $Y_n.$ The next theorem guarantees uniform integrability of stopped martingale of submartingale with uniformly bounded conditional increment.
$$X_{n\wedge N} = X_0 + \sum\limits_{m=1}^n (X_m - X_{m-1}) \mathbf{1}_{m \le N}\\ |X_{n\wedge N}| \le |X_0| + \sum\limits_{m=1}^n |X_m - X_{m-1}| \mathbf{1}_{m \le N}$$ Let $Z$ be the right-hand side of the inequality. $$\begin{aligned} E|Z| &\le E|X_0| + \sum_m |X_m - X_{m-1}| \mathbf{1}_{m \le N} \\ &\le E|X_0| + \sum_m E\left( \mathbf{1}_{m\le N} E(\left|X_m - X_{m-1}\right| | \mathcal{F}_{m-1}) \right) \\ &\le E|X_0| + B \cdot \sum_m P(m \le N) \\ &= E|X_0| + B\cdot EN < \infty. \end{aligned}$$ Thus $Z$ is integrable and $X_{n\wedge N}$ is uniformly integrable. $EX_0 \le EX_N$ follows directly.
Assymetric random walk
As an application of optional stopping, we look into properties of assymetric random walk. We define assymetric random walk $S_n = \xi_1 + \cdots + \xi_n,$ $S_0 = 0$ where $\xi_i$’s are i.i.d. with $P(\xi_1=1)=p,$ $P(\xi_1=-1)=q,$ $p+q=1.$ Let $\text{Var}(\xi_1) = \sigma^2 < \infty$ and $\mathcal{F}_n = \sigma(\xi_1,\cdots,\xi_n)$ for $n\ge 1,$ $\mathcal{F}_0$ be a trivial $\sigma$-field. Let $\varphi(x) = (\frac{1-p}{p})^x.$
(b) $T_x := \inf\{n: S_n=x\},$ $x\in\mathbb{Z}$ is a stopping time and $P(T_a < T_b) = \frac{\varphi(b)-\varphi(0)}{\varphi(b)-\varphi(a)}$ for $a<0<b.$
(c) $1/2<p<1$ and $a<0<b \implies$ $T_b < \infty$ a.s. and $P(T_a < \infty) < 1.$
(d) $1/2<p<1 \implies$ $ET_b = \frac{b}{2p-1},$ $b>0.$
expand proof
Acknowledgement
This post series is based on the textbook Probability: Theory and Examples, 5th edition (Durrett, 2019) and the lecture at Seoul National University, Republic of Korea (instructor: Prof. Sangyeol Lee).